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Interval estimators of parameters for normal one
sample and balanced one-way random effects models
when data are rounded

Chiang-Sheng Lee

Major Professor: Stephen B. Vardeman
Iowa State University

In standard statistical analysis, data are typically assumed to be essentially exact.
But in fact, all real data are reported to some smallest unit of measure related to the
precision of the device used to produce them. We might call such data “rounded”
because they are really obtained by “rounding to something.” We first discuss the
interval estimation of the parameters © and o when a single rounded sample comes
from the N(u, o?) distribution with both parameters unknown. Then we discuss the
interval estimation of variance components ¢ and o if rounded data are from a balanced
one-way normal random effects model. For each problem rounded-data likelihood-based
methods are compared to naive calculations made as if observations were exact. We find
that with some modifications the likelihood-based methods provide an effective way to

analyze such data.
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1 INTRODUCTION

Introduction

It is a practical problem that data on hand are sometimes obtained using crude
gaging. For example, a scale might read only to the nearest pound while ounces are
still important. We might call such data “rounded " since they are really obtained by
rounding to the nearest unit. Furthermore, we can call them “rounded Normal data”™ if
underlying exact values are from a Normal distribution.

In standard statistical analyses, data are assumed to be essentially exact. It is
of interest to know what happens to the statistical properties of these methods when
rounded data are used. Do the traditional methods still work? And if they do not, what

are reasonable ways to improve on these methods?

Dissertation Organization

This dissertation contains three papers that focus on finding better methods of in-
terval estimation of distribution parameters when rounded data are collected. When
rounded sample is from the N(u,c?) distribution with both parameters unknown, we
discuss interval estimators of the parameters u and o separately in Chapters 2 and 3.
In Chapter 4, similar analyses are made of interval estimators of the two variance com-
ponents o and o, for rounded data from the balanced one-way random effects model.

In each chapter, we start by defining different types of likelihood functions (like the



N

log-likelihood function and an appropriate profile likelihood function). then discuss some
properties of these functions for special data configurations. The properties considered

include approximate maximizers, supremum values, and the qualitative nature of the

functions.

In each problem two methods are used to construct confidence intervals. One is
a traditional method derived as if the data were exact and the other is a likelihood-
based method. After the simulation and computation, adjusted versions of the simplest

likelihood-based methods are suggested and some related results are provided.



2 INTERVAL ESTIMATORS OF THE PARAMETER 4
FOR ROUNDED NORMAL DATA

A paper to be published in the Journal of Quality Technology

Chiang-Sheng Lee and Stephen B. Vardeman
Iowa State University, Ames, IA 50011-1210

Abstract

Standard statistical methods are based on an implicit assumption that numerical data
are exact. But in truth, all real data are rounded to some smallest unit of measure related
to the precision of the device used to produce them. When the degree of rounding is
severe, ignoring the rounding produces statistical methods with operating characteristics
far from nominal. We discuss the interval estimation of the parameter p when rounded

data come from the N(u,0?) distribution.

Key Words: crude gaging, interval-censoring, likelihood, profile likelihood, coverage

probability, average length

Mr. Lee is a Ph. D. Candidate in Industrial Engineering in the Industrial and Manufacturing Systems
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Usually, we suppose that numerical data are exact. But in truth, all real data are
rounded to some smallest unit of measure related to the precision of the device used to
produce them. Because of this, it can reasonably be assumed that a sample in hand
was collected by “rounding to something.” We will discuss the interval estimation of the

parameter g when such rounded data come from the N(u,0?) distribution.

2.1 Introduction

It is an important practical problem that the collection of measurement data is
sometimes done using relatively crude gaging. For example. a scale might read only to
the nearest pound while ounces are still of some importance. Traditional methods of
estimation of distribution parameters and the construction of confidence intervals are
really based on an assumption that observed data are essentially “exact.” It is of interest
to know what happens to the statistical properties of these methods when, in fact. the
available data are produced by relatively crude gaging. Do nominal (or exact data)
statistical properties carry over to the case of crudely gaged data? And if they do not,
what are reasonable replacements for these traditional methods?

The main purpose of this paper is to investigate the properties of interval estimators
of the parameter u based on rounded Normal data. Two methods will be compared. One
is the traditional ¢ interval (appropriate for exact Normal data) and the other is obtained
from inversion of (rounded data) likelihood ratio tests for . Our end goal is to find
which method provides better confidence intervals for u. We first discuss the likelthood
function for rounded Normal data. Then we discuss the maximum likelihood estimates of
p and o for two special cases. The construction of the rounded data confidence intervals
for 1 (and approximate formulas for them) will be provided. Then simulation results
are given, and based on these, a correction to the second method for small sample sizes

is suggested. We also compute and compare the average interval lengths for these two



methods for various sample sizes.

2.2 The Model for Rounded Normal Data

Without loss of generality, it is convenient to assume that all observations available
for data analysis take on integer values. (Measurements can, for example, be expressed in
an integer number of smallest possible increments above a nominal value.) One possible
model for such data is that they arise from rounding a random sample from a Normal
process with mean p and standard deviation o. With this model, the probability that

n observations X, X, ..., X, take the integer values z,zs,...,z, is

f(xspu,0) = Pr(X, =z, Xo=22,..., Xpn =2z,)

- ffe(ton) e(==lon)

i=1 g

_ H{(D(i-{-().f)—u)_@<i——05)—u>}"" (2.2)

: o
where ®(z) is the standard normal cumulative probability function, the product in (2.2)
is over integer values ¢ and n; is the number of observed values which equal the integer
i. The expression (2.2) can be termed the likelthood function. It will be convenient to
work with the natural logarithm of expression (2.2) and thus define the log likelihood

function by
Lip.o) =Y ni+ln {<I> (m) _® (m» . (2.3)
Finally, define
L=(p) = sup Lip.o) . (2.4)

Then L*(n) < 0 is often called the profile loglikelithood function for u., and for fixed p

can be explained as the “maximum” or supremum value of L(u, o) over o >0.



2.3 Approximate Maximizers of L(u, o)

Apparently, there are no closed forms for maximizers p and o of the expression (2.3).
One method to get approximate maximizers ({, &) is to apply the mean value theorem,

which says that for F'(z) a differentiable function on (a, b)

F(b)— F(a)=(b—a)* F'(a+ €* (b— a)) for some ¢ € (0, 1).

where F’(z) is the first derivative of F'(z). Putting a = t=05-p) b= (t+0.5— ’u).
o o
F(z) = ®(z), and F'(z) = ¢(z) into above expression, we get
' + 0.5 —  — 0.5 — 1 ,/1—05—
{e(=—F)-e (=)o () es

for some € € (0,1) and ¢(z) the standard Normal probability density function.
As a convenient and simple approximation, we might let € = 0.5 in above equation and

get

(0(H2) g (B ts(). s

It is clear that under some circumstances this approximation is a poor one. For
example, putting o = 0.001, x = 0.3 and 7 = 0 into (2.6), we get essentially 1 on the left
side and essentially 0 on the right side. As a second example, suppose that again i = 0
and o = 0.001 but x changes from 0.3 to 0. Then the right side of (2.6) is 398.9. which

is much bigger than 1. The point is that approximation (2.6) can be poor if ¢ is small.

On the other hand approximation (2.6) works very well when o > 2 and l(l — ’u)l < 3.
ag

Substituting expression (2.6) into equation (2.3) produces

L(ﬂ,a)é;n;*ln{é*qﬁ(i—u)}. (2.

g

N
2

(The rounded data log likelihood is approximately what one would get treating the
rounded values as if they were exact Normal observations.) If we take partial derivatives

with respect to u and o in expression (2.7) and set them to 0, we get approximate



~1

n; * (Z—-:-i')2

maximum likelihood estimates of 4 and o, T and Z respectively, the

t

maximum likelihood estimates for a Normal model supposing the integer observations

to be exact, not produced by rounding.

2.4 Special Cases in the Maximization of L(u, o)

There are two special forms of data (z;, z3, ..., z,) that cause problems in the numer-

ical maximization of L{y,c). We will call these Case 1 and Case 2.

2.4.1 Casel

Case 1 is the situation where a sample contains only one distinct value, say i for
convenience. When such happens, expression (2.3) strictly speaking has no maximum
value for o > 0. But the supremum value of L(u, o) is nearly achieved for any x in a
particular interval (when o is small enough). More precisely, if 4 € (20 — 0.5,7¢ + 0.5),

then

lim{‘I) (2’0-{-0.5—;1) _cp(z'o—Oj—u)}":L

o—0 o o

or
lim L(u,0) = 0.

Figure 2.1 shows a typical graph of L*(u) versus 4 when a sample contains only one
distinct value. From Figure 2.1, it is easy to see that the supremum value of L(u, o)
is 0 ( i.e. sup,ecpSup,soL(x,0) = 0 ), and this value is approached only when u is
between i — 0.5 and g + 0.5. We can also see that there are two discontinuities in the
graph, which occur at the points 4 = 70 — 0.5 and g = iy + 0.5. The reason for these
discontinuities is that the supremum value of L(zy £ 0.5,0) is —n*In(2), which is much

smaller than 0.



—n*In(2)
¥ A
L*(u)
O -
© -
O -

7

Figure 2.1 Representative graph of L*(x) when a sample contains only one
distinct value. This particular graph is for a case where a sample
of size n = 5 contains only the value 0.



Vardeman and Jensen(1989) concluded that if there is only one value i observed in a
given sample, we might still use i = T = 79 and & = 0 as “maximum likelihood estimates™
for the parameters u and o, but at the same time should recognize that many different

(¢,0) pairs with small o and p € (20 — 0.5,%0 + 0.5) are essentially indistinguishable.

2.4.2 Case 2

Case 2 is the situation where a sample contains only two different values with the
sample range 1, say the integers ¢p and ip+1. Again, a maximum value of L(u, o) is not

achieved. But in this case, the supremum value of L({u, o) is

iy *10(T2) + nipp = In(=2E) | (2.8)

which is approached if y and o are chosen so that

Poé?— and Pliﬁ"—;i’l, (2.9)

where P, and P, are the probabilities assigned to integers 1o and (g + 1) by the rounded
io+k+0.5—#) _(I)(io+k—0-5—*ﬂ> for

Normal distribution. (That is, P, = @ (

o o
k=0,1.)
. 1o — 0.5 —
The two conditions in (2.9) are equivalent to the three constraints @(io—Ta—'u) =
o+ 1.5 — o+ 0.5 — i . .
0, @(Z—oi—i—ﬁ) = 1, and @(Lﬁ) = n—n"— simutaneously. Using these con-
o o
straints and the facts that ®(—3) = 0 and ®(3) = 1, the following two results hold.
: 1 o+ 0.5 — . .
Result(i) If nn—° > 3 then o = 20-—(;:_—1(-%)—# makes the function L(u, o) approximate
its supremum value when p belongs to the interval
) . P-1(2n) . -
( 20+0.0—m , 10+0.5).
Result(ii) If Ilf— < % then o = %ﬁ makes the function L(u,o) approxi-
mate its supremum value when p belongs to the interval

3

).
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Figures 2.2 and 2.3 show the two types of graphs possible for the function L*(u)
in Case 2 when n;, # nij+1. When n;, > n;4; the graph is similar to Figure 2.2 and
when n;, < n;,+1 the graph is similar to Figure 2.3. There is a point of discontinuity at
i =10 + 0.5 in both pictures. This is because L*(ig + 0.5) = —n=In(2), and this equals
the value in display (2.8) only when _71_1;0_ = é In other words, if the sample contains
only two values with a range of 1, the function L*(u) will be continuous only when the

two different values have the same observed frequency (i.e. when n;, = n;y4+1)-

2.5 Construction of the Intervals for y

Two methods of making confidence intervals for g will be discussed in this section.
First, if we ignore rounding and treat the rounded data as “exact” Normal data, then
the usual (1 — ) level confidence interval for p is

_ s _ s .
[z — _ﬁ *tn-1,1-2), T+ _ﬁ *tn-1,1-2) ], (2.10)
2

n

. (z: — Z)
where s = ;———(n_ ) .

(n — 1) degrees of freedom.

and f(n-11-g) is (1 — ) quantile of the ¢ distribution with

Second, a method of explicity using the rounded data joint distribution in display
(2.1) to construct the confidence intervals for p is to invert likelihood ratio tests of
Ho : # = po and apply the (asymptotic) chi-square null distribution associated with the
likelihood ratio test statistic (see, for example, Bickel and Doksum (1977) page 229).
That is, if p = po, then

SUPss0 f(x; Ho, 0')

—~2%1n
( Supo’)O sup“GR f(x; K, T

(where f(x;p,o) is the likelihood function described in expression (2.1)). Or using the

notation in this paper, if p = po

=2 % ( L*(po) —sup L™(1) ) ~ xfyy - (2.11)
rER
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Representative graph of L*(x) when a sample contains two dis-
tinct values with range of 1. This particular graph is for a case
where a sample of size n = 5 gives ng = 3, n; = 2.
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Figure 2.3 Representative graph of L*(u) when a sample contains two dis-
tinct values with range of 1. This particular graph is for a case
where a sample of size n = 5 gives ng = 2, n; = 3.
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(Note that sup,cp L*(12) is the supremum log-likelihood value.)
Given a desired significance level o, we can construct an interval of means u satisfying

the inequality

N =

sup L™(1) — L™ (1) € = * X{11-a) » (2.12)
n€ER

and conclude from the approximation (2.11) that the resulting interval has (asymptotic
or) approximate coverage probability (1 — a).
For the rest of this section, we consider the nature of the interval specified by (2.12)

in Case 1 and Case 2 discussed in the previous section.

2.5.1 Case 1l

From Figure 2.1, it is easy to see that if n xIn(2) > I * X%I,I—a)’ then any u €

2
(20 — 0.5, 19+ 0.5) will satisfy inequality (2.12). That is, the interval specified by (2.12) is
(10—0.5,10+0.5). For example, if i0 = 0, n = 5 and a = 0.05, the above inequality holds
and hence the confidence interval for u is (—0.5,0.5). In fact, if n > 3 and o > 0.05,
then the confidence interval (2.12) for Case 1 is always (1 — 0.3, 29 + 0.5). This interval
is much wider than the ¢ interval degenerate about iy (that is prescribed by equation
(2.10) since T = 70 and s = 0 in Case 1). (Note by the way, that for rounded data with a

range of 0, neither of the two methods we’re considering produces intervals that change

with n or a.)

2.5.2 Case 2

When the range of a sample is 1 (and the graph of L*(x) looks like Figure 2.2 or
Figure 2.3) a numerical search is required to find the interval described by display (2.12).
However, in part (A) of the Appendix, we provide useful empirical approximations for

the end points of the likelihood-based intervals for this case. (Part (B) of the Appendix
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provides corresponding approximations for the situation where the range of a sample is

2 or more.)

2.6 Simulations

In this section, we use the two methods discussed in previous section to find intervals
for the parameter u from simulated Normal samples rounded to the nearest integer.
First, we randomly select a sample of size n from a Normal distribution with mean pu
and standard deviation o. After getting the exact data, we round these to integers, then
apply formulas (2.10) and (2.12) to compute the confidence intervals for the parameter
p. The last step is to check whether the intervals contain the g or not. If. for a given
method, the answer is “yes.” then we increment a counter (¢ or ¢ respectively for methods

(2.10) and (2.12)) by 1. If the answer is “no,” the counter is not incremented. This is

t1000 d C1000

1000 “™° To00

are then Monte Carlo estimates of the actual coverage probabilities for the nominally

repeated 1.000 times, and so we obtain counts #1990 and cjog. The ratios

(approximately) (1 — ) level confidence procedures.

To illustrate, suppose an initial random sample of size n = 10 taken from the Normal
distribution with ¢ = 1.0 and o = 0.25 produces rounded data with ng =2 and n; = 8.
After computing, we can get (0.556,1.044) from formula (2.10) and (0.5.0.996) from
formula (2.12) when a = 0.10. It is then obvious that only the {-interval contains the
true parameter u = 1.0. so we set the counters ¢t; = 1 and ¢; = 0. Then suppose that a
second rounded Normal sample contains n = 10 values ¢g = 1.0. For this second sample.
the t-interval is degenerate at 1. and the interval defined by (2.12) is (0.5, 1.5). In this
case we will increment both ¢ and ¢ by 1 and have t; =2 and ¢; = |. And so on through
1,000 samples.

Different values of 1, 0,n. and a were used in the simulations to provide a thorough

comparison of the two methods. We considered x = [0, 1.0](0.1), o € {0.01. 0.25, 0.5,
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1.0, 1.5, 2.0}, n = [3, 20](5), and a € {0.05, 0.10, 0.20}. where [a.b](c) means the
values from a to & with increment c. Figures 2.4 and 2.5 are graphs of the estimated
coverage probabilities for the t-intervals and x2-intervals (2.12) for then = 5 and n = 15
cases. In those graphs, the solid line indicates the estimated coverage probability for
the t-intervals, and the dashed line indicates the estimated coverage probability for the
x2-intervals. (The actual coverage probabilities are symmetric about g = 0.5, so for a
given o, n and o we have averaged estimated coverage probabilities for ¢ and (1 — w)
before plotting.)

After analyzing these graphs and similar ones for the n = 10 and n = 20 cases, we
can make several conclusions:

(1) When o is small, say o = 0.01, the graphs display basically the same pattern
for all combinations of n and «. We can also see that the coverage probability for the
likelihood method (2.12) is almost always bigger than that for the ¢ method. except for
the special points £ = 0, 0.5, and 1.0. These points deserve explanation.

First, we focus on the coverage probabilities for the likelihood-based intervals (in-
dicated by the dashed lines on the Figures 2.4 and 2.5). If 0.0 < u < 0.5 and o is

0.5—pu .
) = 1).
o

then all of the “exact” sample will typically fall below 0.5 and the rounded values will

" s w . . —-0.5 —
“small”(here the word “small” means that o satisfies ®( 2T R

) - B2
all be 7o = 0. Similar reasoning applies to the interval 0.5 < g < 1.0, but this time
all rounded data will typically have the value 1. Because the interval for x in Case
1 is always (g — 0.5,79 + 0.5). the true parameter u is essentially always contained in
the interval. That’s why the estimated coverage probabilities for the likelihood method
(2.12) always have the value 1. But when g = 0.5 and o is small. the values in the
rounded sample will typically be a (binomial) mixture of 0’s and 1's, so the coverage
probability will be smaller than 1.

Second, we check the solid lines on the pictures and consider the ¢ interval coverage.
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The solid lines indicate coverage probabilities larger than 0 at ¢ = 0. 0.5 and 1.0. but
0 probabilities for other u. Since when o is small. the rounded samples all tend to
contain the single value 0 if x € [0,0.5) or the value 1 if 4 € (0.5,1.0]. the ¢ method
tends to produce intervals degenerate at Z = 0 or £ = 1. So the method brackets y
with probability near 1 only when p = 0 or 4 = 1. This explains why the coverage
probability is always 1 at the two points g = 0 and g = 1. but is 0 for € (0.0.5) and
¢ € (0.5,1). As to the situation when p = 0.5, the same kind of reasoning applies here
as was applied to the method (2.12).

(2) When o grows bigger, say o > 0.5, then all the graphs indicate that the coverage
probability for the ¢ method is closer to the nominal probability (1 — «) than that for
the likelihood method. The graphs show that the actual coverage probabilities for the
likelihood method approach the nominal level (1 — @) as n increases. But they are still

lower than the values one gets from ¢ method.

2.7 Improving the Coverage Probability Calibration of the
Likelihood-Based Intervals and Final Comparisons to the

t-Method

The simulation results in previous section show that for small n the coverage proba-
bility for the method based on inversion of the likelihood ratio tests is much lower than
the (desired) nominal value (1 — @) when applied exactly as in (2.12), particularly for
large 0. This suggests that for small », adjustments to the xf, ,_,, values appearing in
(2.12) are needed. In other words, one might try to find an appropriate value ¢(n. o) to

replace x?, ,_,,) in (2.12) so that

Pr[ — 2 (L*(g) — M) < c(n,a) | > (1 —a) .
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for most (u,o) pairs. (M continues to be the supremum value of the log-likelihood

function.) If this can be done, we can then use the likelihood-based intervals defined by

sup L*(1) — L*(1) < = = c{n, ) - (2.13)
u€ER

It might be expected that for large o, the likelihood ratio test based on “rounded”
data is equivalent to the likelihood ratio test of the same hypothesis of Hp : u = po based
on “exact” data. The (standard) development of this exact data test (see Bickel and
Doksum (1977, pages 209-212)) shows that the exact data version of —2x*(L"(u)— M)

is

nxln[1+ e (.1:—#)2]-
n—1 s
Now, with exact normal data T = —\/ﬂw—_ﬁl is well known to have a t,_; distri-

S

bution. This suggests that a choice of ¢(n, «) likely to produce correct large o coverage

probabilities is

2
t(n—l,l—--‘z-"

c(n,a) =n=*ln ( _1)+1),

for tn-1,1-2); the 1 — 5 quantile of the ¢,_; distribution.

Table 2.1 gives ¢(n, a) values for different combinations of n and «. We have applied
these ¢(n,a) values to make Figures 2.6 to 2.9 giving estimated coverage probabilities
for sample sizes n € {2, 5, 10, 15}, means g = [0, 1.0](0.1), and standard deviations
o € {0.01, 0.25, 0.5, 1, 5, 10}. In these figures, the solid lines indicate the coverage
probability from t-method, and the dashed lines indicate the coverage probability from
likelihood-based method when ¢(n, @) is used. Comparing Figure 2.4 to Figure 2.7 and
Figure 2.5 to Figure 2.9, we can see that when o > 0.5, using the ¢(n, «) values makes
the coverage probabilities much closer to the desired value (1 — «), and does so without
changing much when ¢ is small (e.g. ¢ = 0.01).

In addition to estimating coverage probabilities we also ran simulations to compare

average interval lengths for the ¢-method and likelihood-based method. Tables 2.2, 2.3,
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Figure 2.8 Estimated coverage probability for sample size n = 10.
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Figure 2.9 Estimated coverage probability for sample size n = 15.



Table 2.1 ¢(n, «) values for different n and a.

o

n 0.05 0.10 0.20

2 10.18 7.42 4.70

3 6.98 4.98 3.06

4 5.90 4.18 2.55

3 5.37 3.80 2.31

6 5.05 3.57 2.17

7 4.84 3.42 2.08

8 4.70 3.31 2.01

9 4.59 3.23 1.96

10 4.50 3.17 1.93
15 4.26 3.00 1.82
oo 3.84 2.71 1.64

and 2.4 present average lengths for 1,000 ¢ intervals (from(2.10)) and 1,000 likelihood-
based intervals (from(2.13)) for various g, o, and n.

The general character of the results in these tables is as follows:

(1) At p = 0.0 and 0.25, the ¢ method average length is much smaller than the
likelihood or “x?” method average length for ¢ = 0.01 and 0.25. And as o grows, the
mean lengths become quite similar. The difference in lengths when o is small derives
from the fact that many of the samples have range 0, and the poor coverage probabilities
for the t method evident in Figures 2.6-2.9 show the impact of the small mean lengths
for the t method.

(2) At u = 0.5 the average lengths for two methods are close to each other.

2.8 Conclusion

In light of the whole discussion in this paper, we reach the following general conclu-

sions about how to handle crudely gaged data in the interval estimation of u.



Table 2.2 The average simulated lengths for ¢ and the likelihood methods

for yo = 0.0.
p=0.0
g 0.01 0.25 0.50 1.00 5.00
n Q { « /\'2 » t « X? » ¢ « ’,2 ” t « X2 ”» ¢ uXQ »
0.05 | 0.000 | 6.167 | 0.889 | 6.596 |6.760 | 9.726 | 14.574 | 16.050 | 69.795 | 70.098
210.10 | 0.000 | 3.094 | 0.442 | 3.304 | 3.359 | 4.846 | 7.242 | 7.982 | 34.681 | 34.835
0.20 | 0.000 | 1.571 | 0.215 | 1.669 | 1.637 | 2.392 | 3.530 | 3.907 | 16.906 | 16.997
0.05 | 0.000 | 1.553 | 0.391 [ 1.727 |2.241 { 2.710 | 4.508 |[4.601 | 21.663 | 21.651
310.10]0.000 | 1.124 | 0.266 | 1.232 | 1.521 | 1.859 | 3.060 | 3.126 | 14.702 | 14.697
0.20 1 0.000 | 1.000 [ 0.171 | 1.032 |0.982 | 1.286 | 1.976 | 2.036 | 9.494 | 9.483
0.05 { 0.000 | 1.035 | 0.258 | 1.122 | 1.553 | 1.753 | 2.998 | 3.013 | 14.639 | 14.628
4 10.10 | 0.000 | 1.000 |0.191 [ 1.026 | 1.148 | 1.345 | 2.217 |2.234 | 10.826 | 10.817
0.20 | 0.000 | 1.000 | 0.133 | 0.969 |0.799 | 0.998 | 1.643 | 1.560 |7.534 | 7.523
0.05 { 0.000 | 1.000 | 0.236 | 1.033 |1.276 | 1.402 | 2.465 |2.459 | 11.897 | 11.897
510.10 | 0.000 | 1.000 |0.181 [ 0.979 }0.980 { 1.108 }1.893 | 1.889 |9.135 |9.143
0.20 | 0.000 | 1.000 | 0.130 [ 0.928 |0.704 [ 0.833 | 1.361 | 1.356 [ 6.570 | 6.567




able 2.3

'The average simulated lengths for ¢ and the likelihood methods

for yr = 0.25.
j=0.25
o 0.01 0.25 0.50 1.00 5.00
n a { « /\,2 " { “ /\,2 ” ¢ “ X2 " ¢ “ X2 ”» ¢ « x2 "
0.05 ] 0.000 | 6.167 | 3.138 | 7.680 | 7.446 | 10.140 | 14.485 | 16.027 | 72.959 | 73.282
2 10.10 [ 0.000 | 3.094 | 1.589 | 3.837 |[3.700 | 5.0561 | 7.198 | 7.971 | 36.254 | 36.418
0.20 | 0.000 | 1.571 | 0.760 | 1.917 | 1.804 | 2.489 | 3.509 | 3.902 | 17.672 | 17.770
0.05 1 0.000 | 1.553 | 1.185 | 2.056 | 2.277 | 2.681 | 4.507 |4.608 | 21.742 | 21.727
310.10 | 0.000 | 1.124 | 0.804 | 1.434 | 1.545 | 1.837 |3.089 | 3.131 | 14.755 | 14.748
0.20 | 0.000 | 1.000 }0.519 ] 1.082 {0.998 | 1.260 | 1.975 |2.041 |9.528 |9.516
0.05 { 0.000 | 1.035 | 0.822 | 1.318 |} 1.639 | 1.767 |2.955 | 2.968 | 14.805 | 14.794
410.10 { 0.000 | 1.000 | 0.608 | 1.090 |1.212 | 1.330 | 2.185 | 2.200 | 10.948 | 10.940
0.20 { 0.000 | 1.000 | 0.423 { 0.906 |{0.844 | 0.964 | 1.521 | 1.536 | 7.619 | 7.609
0.05 | 0.000 | 1.000 [ 0.676 | 1.098 | 1.314 [ 1.384 | 2.358 |2.362 | 11.418 | 11.418
510.10 | 0.000 { 1.000 |0.519 {0.943 |1.009 {1.081 |1.810 | 1.817 |8.767 {8.775
0.20 | 0.000 | 1.000 | 0.374 | 0.798 |0.726 | 0.798 | 1.302 | 1.307 |6.305 | 6.303




Table 2.4

The average simulated lengths for ¢ and the likelihood methods

for ¢ = 0.5.
jt="0.5
T 0.01 0.25 0.50 1.00 5.00
n a { @ X2 k) { “ XQ ”» ¢ « /\,2 n { “ X2 ” ¢ « X2 ”n
0.05 { 6.391 | 9.249 [ 6.035 [ 9.077 | 7.459 | 10.077 | 14.320 | 15.658 | 68.588 | 68.904
210,10 [ 3.176 | 41.608 | 2.999 | 4.529 |3.706 | 5.019 | 7.116 | 7.786 | 34.082 | 34.242
0.20 | 1.548 | 2.275 | 1.462 | 2.236 | 1.807 | 2.473 | 3.469 | 3.810 | 16.613 | 16.708
0.05 | 2.169 | 2.474 | 2.166 | 2.473 | 2.493 | 2.765 | 4.590 | 4.666 | 22.463 | 22.446
31010 | 1.472 { 1.691 | 1.470 | 1.691 | 1.692 | 1.887 |[3.116 |3.170 | 15.244 | 15.237
0.20 { 0.950 [ 1.150 | 0.949 | 1.150 | 1.093 | 1.270 | 2.011 | 2.061 |9.844 | 9.831
0.05 | 1.517 | 1.575 | 1.464 | 1.557 | L.715 | L.779 | 2.974 |2.983 | 14.725 | 14.713
410,10 [ 1.122 { 1.183 | 1.083 { 1.177 | 1.268 | 1.334 | 2.199 |2.210 | 10.889 | 10.880
0.20 | 0.781 } 0.845 |0.753 { 0.851 |[0.882 | 0.951 | 1.530 | 1.542 [ 7.577 | 7.567
0.06 | 1.199 | 1.221 | 1.201 | 1.219 | 1.382 | 1.398 |2.455 |2.453 | 11.680 | 11.680
510.10 { 0.921 [ 0.947 | 0.922 { 0.944 | 1.061 | 1.081 | 1.885 | 1.885 |8.969 | 8.977
0.20 | 0.662 | 0.689 | 0.663 { 0.686 | 0.763 | 0.783 | 1.356 | 1.354 | 6.450 | 6.448
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(1) When it is a priori clear that o could be small in comparison to “rounding
precision” and one obtains a rounded sample with all values equal to 7y, then there is
really no way to estimate p reliably beyond saying y € (20 — 0.5,7 + 0.5). (Of course,
in such cases, the best option in terms of quality of estimation is to find another gage
that is not so crude.)

If obtaining better gaging is not an option and it is @ priori clear that it is possible
that o < 0.5, it is best to use the likelihood-based method (2.13), since the simulation
results tell us that it gives actual coverage probability closer to (1 — «) than that of
the t-method. (At the same time we must remember that the likelihood-based interval
covers more often than we expect from its nominal level.)

(2) When one is a prior: sure that o > 0.5, both methods (2.10) and (2.13) can be
used except for n = 2. The simulations show that the likelihood-based method is much

better than the ¢-method when ¢ = 0.5 and 1. See Figures 2.6.

Appendix

In some situations it can be helpful to have approximations for the end points of the
likelihood-based intervals. We provide such in this Appendix.
(A) Approximations for Case 2.

Continue to let n;, be the number of values 7y observed. n;;4+; be the number of values
(z0+1) observed, and take M to be supremum of the log-likelihood given in display (2.8).

To find approximations for the intervals prescribed by display (2.13) in Case 2, we

Z(zp—p)? . - . ..
plug &, = Z (—nL) into the approximation (2.7) modified by an empirically de-

i=1

rived “correction factor” k to produce the approximation

L) = kx5 e v In( x o
(1) = kx 3 e In(=—x &

i =io K

—£)).
a-#



for
1 , if nyyg31 < n4 when computing a lower bound for u
0.975, if nj;41 < n;, when computing an upper bound for x

0.975, if njy41 > n,, when computing a lower bound for u

_1_
0.975"

if ni;y1 > n;, when computing an upper bound for .
\

Substituting this approximation into display (2.13) and solving the quadratic equation
in p that results when there is equality, we get two solutions for . For convenience in
- 5)2

what follows, let w = (2% M —c¢(n,a))/n and 62 =) _ (z‘_n_..
=1

Case 2a : When n;,+1 < n;, is observed.
If (n *1n(2) + M) > ; * c(n,a), then the interval for p prescribed by display (2.13) is

approximately

(2 — Jleml=w/(2% 7)) — 62, io + 0.5). (2.14)

Otherwise, the interval for u is approximately

2
—
[}

(2 — Jle'mw/(2%m)) — 6% & + \J(em'=(w/097) /(25 7)) — 52 ). (2.

Case 2b : When n;4, > n;, is observed.
If (n *In(2) + M) > 3 * ¢(n,a), then the interval for p prescribed by display (2.13) is

approximately

(io + 0.5. % + /(e1-(097=w) /(24 7)) — 62 ). (2.16)

Otherwise. the interval for y is approximately

(2 — \/(em1-w/097) (2w 7)) — 52, 7 + /(e =021 (24 )) — 52 ). (2.17)

Consider an example. Suppose a sample consists of data x = (0,0,1,1,1,1,1,1,1,1)

and take a = 0.10. Then we have ig = 0, = 0.8,n;;, = 2,n;,41 = 8.¢(10,0.10) =
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3.17, and M = —5.00402. Because n;,4; > n;,, and (10 *In(2) + M) > 1 * ¢(10,0.10).
we apply expression (2.16) to get the interval (0.5, 1.02718). If we use the same data
but take a = 0.05, then (10 * In(2) + M) < 2 * ¢(10,0.05)(= 2.25), so we apply ex-
pression (2.17) and get the interval (0.48492, 1.08444). The “exact” intervals for u
computed from expression (2.13) are (0.5, 1.02133) and (0.48003, 1.08676) for a = 0.10

and a = 0.05 respectively, which suggests that formulas (2.16) and (2.17) provide useful

approximations.

(B) Approximations when the sample range is 2 or more.
To approximate the likelihood-based intervals for general case, we may apply the
Mean Value Theorem and the approximate maximizers g and o mentioned before the

asymptotic result (2.11). That will give us

—2 % (L*(p) —sup L™(p))
uER

] 1 —

1 L 2
- —2*{ Zni*ln(é_—-*(ﬁ( /—L))_an*ln(;*d’( C‘;-:C))}
= —n* ln(?._z)v
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Tu

. 2 (2 — p)? v2 A (zi—3)?
where cri=z——andd =Z———n——
; i=1

=1 n

After solving the quadratic equation

~2
—n * In(Z—Q) = ¢(n, a),
m

one has the approximation to interval (2.13)
- - c(n.a) _ n c{n,a)
(Z—6xVe = —1,z+6*«Ve r —1).

In fact, the reader may verify that substituting the earlier experssion for ¢(n, ) here,

this interval is exactly the usual “t” interval obtained treating the data as exact.
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3 INTERVAL ESTIMATORS OF THE PARAMETER o
FOR ROUNDED NORMAL DATA
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3.1 Introduction

Usually in the point estimation of parameters and the making of corresponding con-
fidence intervals, data are assumed to be essentially “exact.” But in practice, data are
sometimes obtained using crude gaging. For example, a scale might only read to the
nearest pound, while the ounces are still important. We will call such crudely gaged
data “rounded.”

The following questions arise when we analyze crudely gauged or rounded data.
Do the traditional estimati.on methods still work well on these rounded data? What
is an alternative method if they do not? In [1], we discussed interval estimation of
the parameter u when rounded data come from the Normal distribution with x and o
unknown. We found that the answer to the first of these questions depends strongly on

the (unknown) value of o.
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In this paper, we consider interval estimation of the parameter o when rounded data
come from a Normal distribution with both parameters x and ¢ unknown. Two methods
will be compared. One is the traditional (exact-data) x(zn‘l) method and the other is
based on inversion of rounded data likelihood ratio tests concerning o. Appropriate
likelihood and profile loglikelihood functions will be introduced in the next section.
Approximate maximizers of the likelihood, two special cases and the nature of the profile
loglikelihood will be discussed in Sections 3.3 and 3.4. The initial constructions of the
confidence intervals for the parameter o are shown in Section 3.5. Initial simulations
are described in Section 3.6. In Section 3.7 we improve the large o properties of the
second method by replacing the large n critical values for the likelihood ratio tests with
more conservative critical values and study the performance of the modified intervals.
In Section 3.8 we consider an additional improvement of the second method aimed at
correcting remaining small o deficiencies of the method. Final conclusions are drawn in

the last section.

3.2 The Model for Rounded Normal Data

Without loss of generality, we assume observations are integers. We assume they
are obtained by rounding the numerical values from a Normal sample. With this model
assumption, the probability that n observations X, Xs,..., X, take the integer values

T1, T2, .00y Ty IS

f(x;p,0) = Pr(Xy =z, Xo=2z9,...; Xy =z)

_ 1_"[[(1)( x,-+0.5—,u)_¢)( :zt.-—O.S—[.L)]
o o o
+0.5 — i—0.5—
= I (220 g L, (3.

where ®(z) is the standard Normal cumulative probability function, the product in (3.1)

is over integer values ¢, and n; is the number of observed values which take the value i.
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It will be more convenient to work with the natural logarithm of the function in

display (3.1), and we thus define the log-likelthood function by

L(s,0) = Sme nfe(— 12220 ) (1200 Zhy)

Also, we can let
L*(o) = sup L(p, o)
uER

be the profile log-likelihood for ¢ and denote by M the supremum value of the function

Ly, o),

M =sup sup L(u,o).
u€ER o>0

3.3 Approximate Maximizers of L(u,o)

There are no closed forms for values p and ¢ maximizing the function L(u,o). An ar-

gument presented in [1] says that under some circumstances, ¢ and o maximizing L(u, o)

: . = (zi — I)?

are approximately Z and ,| > —
=1

for a Normal model supposing the (integer) observations are exact, not produced by

respectively, the maximum likelihood estimates

rounding.

3.4 Special Cases in the Maximization of L(u,c) and the Nature
of L*(o)
In two special cases, many (u,0) pairs nearly maximizing L(u,o) will be indistin-

guishable in practice. We will call these Case 1 and Case 2. (The word “indistinguish-

able” here means that all of these pairs give L(u,0) near M.)



3.4.1 Casel
Case 1 is the situation where all the observations in a sample have the same value,
say 2o- In this case,

a

i0+0.5—ﬂ
o

L(p,0) =n In[P( ) — & - (3.2)

The supremum value in display (3.2} is 0 and is approached when the pair (u. o) is such

Zo+0.{)'—,u) =1 and Q('I,()—O.5—[.l
g g

that ®( ) = 0. Applying the facts that ®(> 3) =1

and ®(< —3) =0, L(u,0) in display (3.2) approximates its supremum value 0 if (g, o)

is in the triangular region of the (u,o)-plane where u € (i — 0.5, 70 + 0.5) and ¢ €
10+05—p #+0.5—i0)]
3 ’ 3 ’

(0, min(

3.4.2 Case 2

Case 2 is the situation where a sample contains only two different values with sample

range 1, say the integers ig and 70 + 1. As mentioned in [1]. the supremum value of the

log-likelihood for Case 2 is approached when @(w) = 0, @(@_-{-_O._:L——,u) =
) . o
Do and @(M—ﬁ) = 1. and has the form
n
2T nlo+ N
N 1D(?°} + Rig+1 In( n -), (3.3)

where n;, and n;,+; are the numbers of 7o and o + 1 observations in the sample.

Applying above three conditions together with the facts that ®(> 3) = 1 and
o (<L —3) = 0, the following identifies (effectively indistinguishable) (u, o) pairs nearly
maximizing L(u, o).

Result : In Case 2, the function L(u, o) approximates its supremum value (3.3) when
1
34 [0 (=2)]

o € (0, ). and p =1+ 0.5 — ¢~ (22) .
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3.4.3 Typical Plots of L=(o)

In Figure 3.1, we present representative graphs of L*(o) for Case 1, Case 2, and the

case with sample range > 2 (using the samples (1,1,1,1,1), (0,0,1,1,1), and (—1.—1.0,1.1)

. 1
respectively). On this plot, A; = 3 and A, = 3+|‘I’£1(n—(9‘)l and the intervals

(0, A;) and (0, A;) are sets of o’s for which L*(o) is nearly the supremum value. Az =

E (z:—Z)? . . . .
JZ i—2p is nearly the maximizer of L*(¢) in this instance of n = 5 observations
=1 n

with range 2.

3.5 Confidence Intervals for the Parameter o

There are two methods that will be used here to set confidence intervals on the
parameter o. We will call these the traditional method and the likelihood-based method.

The traditional method is based on the fact that without rounding.

(n —1)s? . )
__0.2 ~v X(Tl-l)’ (3.4)
1 i .
where s2 = E (z; — Z)®. Applying the property (3.4), one can get the usual

n—1

=1

(“exact data”) intervals for o2 to be

Yim(wi —2)® TL(zi — £)?

2 * 2
X(n-1.1-2) X{n-1.2)

[ I

and (taking square roots) intervals for o

Lotz —Z)? =iz — )2 -
[ J ,'21 ' ,12 ] (33)
,\(n-1,1—g) X(n—- .2)

(X(2n—l,p) is the p quantile of the x2_; distribution.) We will consider naively plugging

integer-rounded data into these exact data formulas.



L*(o)

Case with sample range >=2

-10

-12

o0 MR s Ao 15 20

c

Figure 3.1 Representative graphs of L*(o) for Case 1. Case 2, and a case
with sample range > 2. (These particular graphs are drawn
under the samples (1,1,1,1,1), (0,0,1,1,1), and (—1,-1,0,1,1).)



38

The likelihood-based method is based initially on the asymptotic result that under

Hy : 0 = 0p and for large n

supuER f(x; M, GO)

—21n
SUP,er SUP,>0 f(X5 4,0

)) ~ Xty (3.6)

Or, using the notations in this paper, for large n
~2 (L*(g0) — M) ~ X{yy-

Using approximation (3.6), a likelihood-based confidence interval for o consists of all

those o for which
~2 (L*(0) = M) £ X{11-a) (3.7)

We now discuss how to find the end-points for the interval defined by (3.7).

3.5.1 The Likelihood-Based Interval in Case 1

As mentioned before, the supremum value of the log-likelihood function L(u.o) for
1+035—u 1 — 0.5~
___a_) —p—="F

Case 1 is 0. The maximum value of ®( ) for fixed o occurs

at ¢ = 7, which gives

L*(c) =n In(2 @(QL) —~1).

-

Putting the above expression for the profile log-likelihood into inequality (3.7) we can

see that the interval for Case 1 is

1

(0. 1

2
N1.1-a)

2 0-1(L (1+e—5))
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3.5.2 The Likelihood-Based Interval in Other Cases

Unlike the situation in Case 1, numerical analysis is needed to find end-points for
the interval (3.7) in other circumstances. In Section 3.8, we provide adjusted endpoints
for likelihood-based interval for Case 2. (One thing to notice is that the lower end-point
of any likelihood-based interval in Case 2 is always 0, just as in Case 1.) In our work in
this paper with likelihcod-based intervals, we use numerical analysis to find end-points
for interval (3.7), but the Appendix also provides approximations to the interval (3.7)

for the situation where the sample range is 2 or more.

3.6 Simulations

In this section, Monte Carlo simulations are used to compare the two interval estima-
tion methods introduced in previous sections. First, we randomly select a sample of size
n from a Normal distribution with mean px and standard deviation o, and then round
the observations to integers. Second, we apply formulas (3.5) and (3.7) to make intervals
for the parameter o. The last step is to examine whether the intervals contain the value
o or not. [f the answer is “ves.” then we increment a counter (¢ or [ respectively for

methods (3.5) and (3.7)) by 1. If the answer is “no,” the counter is not incremented.

1000

1000

are then Monte Carlo estimates of the actual coverage probabilities for the

This is repeated 1,000 times, and so we obtain counts f,o00 and [;g00- The ratios

{1000

d
1000
nominally (approximately) (1 — «) level confidence procedures.

For example, suppose an initial random sample of size n = 5 taken from the Normal
distribution with g = 0.1 and o = 0.5 produces rounded data with range 1 and ng = 2
and n; = 3. After computing, we can get (0.328, 1.574) from formula (3.5) and (0,
0.982) from formula (3.7) when o = 0.05. It is then obvious that both intervals contain
the true parameter o = 0.5, so we set the counters ¢; = 1 and /; = 1. Then suppose that

a second rounded Normal sample contains n = 5 values, all ig = 1.0. For this second
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sample, the traditional interval is degenerate at 0, and the interval defined by (3.7) is
(0, 0.502). In this case we will only increment [ by 1 and have t, = 1 and [, = 2. And
so on through 1,000 samples.

Different combinations of p,o,n, and a were used in the simulations to provide
a thorough comparison of the two methods. We considered p € {[0, 0.5](0.1)}. ¢ €
{[0.5, 1.0](0.1),[2, 10}(1)}, » € {2, 5, 10, 15}, and « € {0.05, 0.10, 0.20}, where
[a, b](c) means the values from a to b in increments of ¢. Figures 3.2 to 3.5 provide graphs
of the estimated coverage probabilities for the traditional intervals (3.5) and likelihood-
based intervals (3.7) for different sampie sizes n. In those graphs, the solid lines indicate
the estimated coverage probabilities for the traditional method. The dashed lines indi-
cate the estimated coverage probabilities for the likelihood-based method.

After analyzing these figures, we reach the following conclusions.

(1) At sample size n = 2, the traditional method is better than the likelihood-based
method only when o > 2. For small o, Case 1 and Case 2 samples are quite likely and
the traditional method fails to produce intervals covering “enough small ¢’s ” for such
samples.

(2) At samples sizes n > 5, the coverage proability for the traditional method is much
closer to the nominal value (1 — &) than that for likelihood-based method for o > 1.0.
(1.0 is a compromise value that suits Figures 3.3 through 3.5.)

(3) Generally speaking, the likelihood-based method is better than the traditional
method (in terms of converage probability) when o is small. (For example, we find that
when o < 0.5 all the coverage probabilities for the likelihood-based method are much

better than those of the traditional method.)
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3.7 Improving the Coverage Probability Calibration of the
Likelihood-Based Intervals

Form the simulations in Section 3.6, we see that although the likelihood-based
method is conservative for small o and guaranteed by standard theory to have cov-
erage probability (1 — «a) for large n, it can be liberal for small n and (particularly)
large o. A possible means of improving the small n performance of the likelihood-based
method is to replace the x7, ,_,, value in (3.7) with a larger value, d(n.a), chosen to
make the coverage probability of the likelihood-based method typically closer to the
nominal value (1 — a).

It is intuitively plausible that for large o, the likelihood ratio test for “rounded” data
is essentially the same as the one for “exact” data. One can find that for “exact” data

(and Lz, ..t and Mexact the exact data analogs of our L™ and M)

—2(Laact(0) — Mexact) =Y — nIn(Y) — n + n In(n). (3.8)

:‘1_-_—_1(1‘1' _ f)2

o2

where ¥ = follows the x7,_,, distribution. We might therefore consider
replacing X(21,1-a) in display (3.7) with d(n, a) that is the (1 — @) quantile of the variable
right side of (3.8) when Y is x{,_,)-

To find d(n, &), we need to find Z(n,a) such that for ¥ ~ X?n—l)
l—a=Pr(Y —nln(Y) < Z(n,a))

since we may then set d(n,a) = Z(n,a)—n+n ln(n). To do this, we need to find values y;
and yp such that y; < y2, y1—nln(y1) =y2—n In(y2). and Pr(y; Y <y)=1—c.
Z(n,c) is then y; — n In(y;). In Table 3.1 we give such d(n,a) values obtained by

numerical methods for different combinations of n and a.

Another set of simulations was conducted, using d(n, a) in place of X(21,1—-o:) in (3.7).

Figures 3.6 through 3.9 summarize the estimated coverage probabilities for the same
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Table 3.1 d(n,a) Values.

(84

n 005 | 0.10 0.20
2 10.47 7.71 4.97
3 7.26 5.23 3.27
4 6.15 4.39 2.71
5 5.58 3.97 2.43
6 5.24 3.71 2.27
7 5.01 3.54 2.16
S 4.84 3.42 2.09
9 4.72 3.33 2.03
10 4.62 3.26 1.99
15 4.34 3.06 1.86
20 4.21 2.97 1.80
30 4.08 2.88 1.75
) 3.84 2.71 1.64

combinations of n, p, and o used in the previous section. On these graphs, the solid
lines indicate estimated coverage probabilities for the traditional method and the dashed
lines identify estimated coverage probabilities for the corrected likelihood-based method
(with d(n.«a) values used in place of \'(21,1—a) in (3.7)). The d(n.a) values make the
estimated coverage probabilities closer to the nominal value (1 — a) except in some

small o cases.

3.8 Improvements of Likelihood-Based Method for Small ¢

Value and Final Comparisons to the Traditional Method

From the figures in previous section, we can see that d(n,a) values improve the
estimated coverage probabilities for most o values, but there are still some small ¢
values (e.g. 0 < 1) where estimated coverage probabilities are much below nominal. For
example, in Figure 3.7 with x = 0.5, the value ¢ = 1.0 at @ = 0.10 and the value o =

0.8 at a = 0.20 have estimated coverage probabilities well below the value (1 — ). In
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this section, we discuss how to improve these small o coverage probabilities.

When o and n are small, there is a large probability of generating a Case 1 or Case
2 sample. This suggests that if we somehow increase the size of Case 1 and Case 2
intervals, we may well be able to improve the coverage probability and cure the small o
problem seen in the simulation results.

Now it is clear that
P, -(the interval fails to cover o) > Pi‘a + P:’o

for P}, = P,.(a Case 1 sample is generated and the interval fails to cover o),
and P2, = P, ,(a Case 2 sample is generated and the interval fails to cover o).

So to produce 1 — & coverage probability, it is necessary to have
P, + P‘ia <a Vu,o. (3.9)

Numerically, we also find for the likelihood-based intervals of Section 3.7 that o <

o21 < 022 < - - < Oz (3], where o, is the upper limit of the interval for a Case
1 sample, and o ; is the upper limit for a Case 2 sample with n;;, = j. The limits
op < 021 <022 << 02 [g derived in Section 3.7 are not large enough to guarantee

that inequality (3.9) holds. So, as a step toward correcting the inadequate small o
coverage probabilities of the likelihood method of Section 3.7, we propose to replace
01,021,022, ", 02, (2] with the smallest set of numbers satisfying both inequality (3.9)
and the order restriction observed by the Case 1 and Case 2 limits of Section 3.7.
Development of replacement Case 1 and Case 2 limits is a “brute force computation”

problem. To replace o; we seek the minimum standard deviation o7 so that
max, P,s:[ Case 1 sample] < o . (3.10)
To replace 02,; we seek the minimum standard deviation o3 ; so that

max,( Pye; [Case 1 sample]
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+ zi P03, [Case 2 sample with n;, =lorn;, =n—1])
=1
< «a (3.11)
Then clearly, of <03, <05, <---< 03 (2] and we propose to use such limits as
replacements for the Case 1 and Case 2 limits of Section 3.7.

Note that for o < o] all Case 1 and Case 2 samples have corresponding modified
intervals that include o. So inequality (3.9) holds. For of < ¢ < 03, all Case 2
samples produce modified intervals including o, but Case 1 samples do not. But (3.10)
guarantees that inequality (3.9) holds. For o7 ; < o0 < 03 ;,,, Casel samples and Case
2 samples with 1 <n;;, <j or n—7 < n;;, <n—1 produce modified intervals that fail
to include o while Case 2 samples with 7 < n;; < n —j produced modified intervals
that do cover o. Then inequality (3.11) guarantees that inequality (3.9) holds.

In Tables 3.2 and 3.3, we provide the modified upper limits 07,03 ,,05,,--, 05 (z) for
Case 1 and Case 2 samples for different n,n;,, and a from above method.

In Table 3.3, the value in the parentheses is n;,, the number of iy observations
occurring in the sample. If n;, > [g] then the upper limit can be found by looking for
n —n;, in the parentheses. (This is because the data (n;,, ni,4+1) and (n —n;, n—ny4q)
will produce the same interval.) For example, if a n = 10 sample is a Case 2 sample
with 7o = 1, n; = 8, and a = 0.05, then the upper limit 0.677 from the table, by finding
the value (n — n;,) = 2 in parentheses.

Figures 3.10 to 3.13 compare the estimated confidence levels for the modified method
of this section to those of the traditional method. The figures show that the estimated
coverage probabilities for small o are improved over those pictured in Figures 3.6 to
3.9 and that the corrected method of this section can (unlike the traditional method)
provide reliable inferences for o based on rounded data.

We also ran a simulation to compare the average interval lengths for the traditional

intervals and the revised likelihood-based intervals of this section for the combinations of
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Table 3.2 The modified upper limit for Case 1 samples.

«

n 005 | 010 | 020
2 5.635 2.807 1.381
3 1.325 0.916 0.638
4 0.822 0.653 0.516
5 0.666 0.558 0.459
6 0.586 0.502 0.422
7 0.533 0.464 0.395
8 0.495 0.435 0.375
9 0.466 0.413 0.360
10 0.443 0.396 0.347
11 0.425 0.381 0.336
12 0.409 0.369 0.327
13 0.396 0.358 0.319
14 0.384 0.349 0.312
15 0.374 0.341 0.306
16 0.366 0.334 0.301
17 0.358 0.328 0.296
18 0.351 0.322 0.291
19 0.344 0.317 0.287
20 0.339 0.312 0.284




Table 3.3 Modified upper limits for Case 2 samples. (The values in the
parentheses are values of n;,.)

(84
n 0.05 | 0.10 | 0.20
2 8.439 (1) 4.182 (1)
3 2.462 (1) 1.684 (1)
1 2.034 (2) 1.303 (1) 1.571 (2) 0.972 (1) 1.189 (2)
5 1516 (2) 0.921 (1) 1.231 (2) 0.728 (1) 0.980 (2)
6 1.153 (2) 1.258 (3) | 0.752 (1) 0.960 (2) 1.054 (3) | 0.620 (1) 0.780 (2) 0.870 (3)
7 0.944 (2) 1.106 (3) | 0.660 (1) 0.800 (2) 0.949 (3) | 0.557 (1) 0.663 (2) 0.802 (3)
8 0.819 (2) 0.952 (3) | 0.599 (1) 0.707 (2) 0.825 (3) | 0.513 (1) 0.597 (2) 0.698 (3)
0.880 (4) 0.755 (4)
0.736 (2) 0.837 (3) | 0.555 (1) 0.644 (2) 0.726 (3) 0480(1) 0.551 (2) 0.610 (3)
0.831 (4) 0.721 (4)
0.677 (2) 0.747 (3) | 0.520 (1) 0.597 (2) 0.654 (3) | 0.454 (1) 0.516 (2) 0.560 (3)
0.890 (5) 0.753 (4) 0.793 (5) 0.652 (4) 0.694 (5)
0.630 (2) 0.690 (3) | 0.493 (1) 0.560 (2) 0.609 (3) | 0.434 (1) 0.489 (2) 0.526 (3)
0.851 (5) 0.685 (4) 0.763 (5) 0.587 (4) 0.672 (5)
0.593 (2) 0.646 (3) | 0.470 (1) 0.531 (2) 0.573 (3) | 0.417 (1) 0.466 (2) 0.499 (3)
0.789 (5) 0.818 (6) | 0.626 (4) 0.707 (5) 0.738 (6) | 0.542 (4) 0.62!1 (5) 0.653 (6)
0.563 (2) 0.610 (3) | 0.452 (1) 0.506 (2) 0.544 (3) | 0.402 (1) 0.447 (2) 0.477 (3)
0.733 (5) 0.791 (6) | 0.587 (4) 0.655 (5) 0.716 (6) | 0.513 (4) 0.569 (5) 0.638 (6)
0.537 (2) 0.580 (3) | 0.436 (1) 0.485 (2) 0.520 (3) | 0.390 (1) 0.431 (2) 0.458 (3)
0.681 (5) 0.745 (6) | 0.558 (4) 0.607 (5) 0.674 (6) | 0.491 (4) 0.531 (5) 0.597 (6)
0.698 (7) 0.624 (7)

2]




Table 3.3 (continued)

0.422
0.534
0.682

0.410
0.514
0.647

0.400
0.496
0.613

0.20

0.379
0.472
0.612
0.370 0.406
0.456 0.487

0.578 0.601
0.362 0.395
0.442 0.470

0.543 0.591

0.480
0.579

0.382
0.466
0.555

0.374
0.454
0.536
0.624

o

0.10
) 0.468 (2) 0.499 (3)
) 0.574 (5) 0.632 (6)
7
1) 0.452 (2) 0.482 (3)
4) 0.550 (5) 0.592 (6)
7) 0.668 (8)
1) 0.439 (2) 0.466 (3)
4) 0.529 (5) 0.564 (6 )
7) 0.655 (8)
1) 0.427 (2) 0.453 (3)
4) 0.511 (5) 0.543 (6)
7) 0.626 (8) 0.644 (9)
1) 0.417 (2) 0.440 (3)
4) 0.495 (5) 0.525 (6)
7) 0.597 (8) 0.633 (9)
1) 0.407 (2) 0.430 (3)
4) 0.481 (5) 0.509 (6)
7) 0.568 (8) 0.609 (9)
10)

(1
(4
(
(
(
(
(
(
(
0.390 (
(
(
(
(
(
(
(
(
(

(2) 0
(5) 0
(8)
(2) 0
(5) 0
(8)
(2)
0.429 (4) 0.456 (5)
(8)
(2)
(5)
(8)
(2)
(5)
(8)

0.514 0.562
0.347 0.377
0.418 0.443
0.495 0.532
0.341 0.370
0.408 0.432
0.480 0.507

(1)
(4)
(7)
(1)
(4)
(7
(1)
(4)
(7)
0.354 (1) 0.386
(4)
(7)
(1)
(4)
(7)
(1)
(1)
(7)
(10

0.567 (10)

0.417 (2) 0.442 (3)
0.506 (5) 0.555 (6)
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€ {0.0,0.25,0.5}, 0 € {0.3,0.5,1.0,3.0,5.0},» € {2,3,4,5}, and a € {0.05,0.10,0.20}.

The results are summarized in Tables 3.4, 3.5, and 3.6.

From these simulations, we may observe the following about the average lengths.

(1) At 0 = 0.3, the average length grows as the value i changes from 0.0 to 0.5. The
reason for this is that the probability of obtaining a Case 2 sample increases with u. We
also find that this happens when o = 0.5, but the increase in average length is not as
pronounced.

For these two small o cases, the average lengths for the traditional method are less
than those from the likelihood-based method, but the simulations shows that the cor-
responding estimated coverage probabilities for the traditional method are much below
nominal.

(2) When o > 1.0, the likelihood-based method obviously has smaller average lengths
than the traditional method. These tables also show that for o > 1.0, changes in x4 do

not much affect inferences for o.

3.9 Conclusion

To sum up the discussion in this paper, we may make the following conclusions.

(1) The simulations show that inferences for the parameter o will not be much
affected by changing the value of location parameter u.

(2) When we have no prior evidence about the parameter o, then the likelihood-
based method (corrected by the use of the limits in Table 3.2 and Table 3.3 for Case
1 and Case 2 samples and d(n.ca) in Table 3.1 when the sample range is at least 2) is
suggested for the estimation of 0. When o is small, say o <1, the simulations show
that the likelihood-based method has more conservative coverage probabilities than the

traditional method. For large o, the estimated coverage probabilities from the likelihood -



Table 3.4

The estimated average lengths for the traditional method (t) and

the final corrected likelihood-based method (!) for 1 = 0.0.

=00
o 0.3 0.5 1.0 3.0 5.0
nl a t l t l t l l l t l
0.05 | 4.027 | 7.659 | 11.502 | 11.190 | 25.875 | 16.839 | 75.066 | 39.136 | 125.637 | 63.668
210.10]1.976 | 3.817 | 5.643 | 5.574 | 12.695 | 8.345 | 36.829 | 19.249 | 61.641 | 31.270
0.20 | 0.941 | 1.883 | 2.687 | 2.748 |6.044 |4.062 | 17.535{9.197 |29.349 | 14.893
0.05 | 0.974 | 1.950 | 2.637 | 2.946 |5.274 |4.308 | 15.478 | 11.067 | 25.690 | 18.218
3 10.10 | 0.648 | 1.351 | 1.756 |2.035 |[3.511 |[2.920 | 10.305 |7.376 |17.104 | 12.124
0.20 [ 0.409 10929 | 1.108 | 1.377 |2.216 |1.906 | 6.503 |4.673 | 10.794 | 7.662
0.05 [ 0.592 | 1.152 | 1.503 | 1.663 | 2.976 |2.568 |[8.699 |6.951 [ 14.560 | 11.589
410.1010.431 [ 0.896 | 1.093 | 1.266 |2.165 | 1.897 |6.329 |5.058 | 10.592 | 8.426
0.20 | 0.295 | 0.685 | 0.747 | 0.934 | 1.480 |[1.331 |4.327 |3.464 |7.243 5.765
0.05 | 0.422 ) 0.873 | 1.171 | 1.292 |2.231 |2.002 |6.412 |5.422 |10.551 | 8.891
5101010319 10.715 1 0.887 {1.025 | 1.690 | 1.537 |4.858 |4.112 |7.993 6.740
0.20 { 0.227 1 0.574 | 0.630 | 0.785 | 1.199 | 1.110 | 3.446 |2.915 | 5.669 4.774

19



Table 3.5 The estimated average lengths for the traditional method () and
the final corrected likelihood-based method (/) for p = 0.25.

je=0.25
o 0.3 0.5 1.0 3.0 5.0
n| a t [ t [ { [ t [ t [
0.05 | 7.765 { 9.565 { 12.148 | 11.546 | 25.163 | 16.656 | 72.841 | 37.944 | 125.414 | 63.568
21010 | 3.810 | 4.769 | 5.960 | 5.7563 | 12.346 | 8.256 | 35.738 | 18.665 | 61.531 | 31.221
0.20 | 1.814 | 2.357 | 2.838 | 2.838 | 5.878 |4.020 | 17.016 | 8.922 | 29.297 | 14.870
0.05 | 1.641 | 2.408 | 2.753 | 3.051 | 5.215 |4.301 | 15.253 | 10.907 | 25.386 | 18.004
31010(1.09311.67311.833 |2111 |3.472 |2918 {10.156 | 7.270 | 16.901 | 11.981
0.20 | 0.689 | 1.149 | 1.157 | 1.433 |2.191 | 1.907 |6.409 | 4.606 | 10.666 | 7.572
0.05 | 0.943 | 1.370 | 1.592 | 1.740 | 2.957 | 2.560 | 8.709 1| 6.958 | 14.501 | 11.540
410.10{0.686{1.061 | 1.158 | 1.327 |2.152 }1.893 }6.336 | 5.063 | 10.550 | 8.391
0.20 | 0.469 | 0.806 | 0.792 10.983 | 1.471 |1.329 |4.333 | 3.467 | 7.214 5.740
0.05 | 0.767 | 1.093 | 1.209 | 1.343 | 2.225 |1.998 | 6.556 | 5.543 |10.791 {9.093
510.1070.581 |0.889 {0916 |[1.070 | 1.685 | 1.533 |4.967 |4.203 | 8.175 6.893
0.20 { 0.412 ] 0.709 | 0.650 | 0.826 | 1.196 |1.108 | 3.523 | 2.979 | 5.799 4.882




Table 3.6 The estimated average lengths for the traditional method (t) and
the final corrected likelihood-based method () for 1 = 0.5.

je=10.35
o 0.3 0.5 1.0 3.0 5.0
n| «o t [ t l { l { l t l
0.05 [ 11.413 | 11.415 | 13.483 | 12.205 | 25.519 | 16.689 | 74.243 | 38.680 | 127.328 | 64.566
210.10]5.600 |[5.693 |6.615 |6.082 |12.520 |8.273 | 36.425 | 19.027 | 62.470 | 31.710
0.20 | 2.666 | 2.816 | 3.149 |3.001 |5.961 |4.028 | 17.343 |9.095 |29.744 | 15.102
0.05 | 2453 | 2954 |2.871 |3.139 {5391 |4.381 {(15.753 {11.257 | 25.533 | 18.108
310.101.633 [2.055 [ 1911 |2.174 |3.589 ]2.968 | 10.488 | 7.502 | 17.000 | 12.051
0.20 | 1.030 | 1.409 | 1.206 | 1.476 |2.265 |1.934 |6.619 |4.751 | 10.728 | 7.616
0.05 | 1.498 |1.729 | 1.705 | 1.819 {2975 |2.562 |8.809 |7.039 |14.749 |[11.739
410.101.090 {1333 |1.240 |1.387 |2.165 |1.892 |[6.408 [5.122 {10.730 [ 8.535
0.20 { 0.745 |[1.004 | 0.848 | 1.027 | 1.480 | 1.327 |{4.382 |3.508 | 7.337 5.839
0.05 | 1.089 | 1.341 | 1.280 | 1.426 |2.226 |1.995 |6.477 |5.477 | 10.650 |8.974
5101010825 [1.087 ]0.970 | 1.139 | 1.686 | 1.531 |4.907 |4.154 | 8.068 6.803
0.20 1 0.585 | 0.865 | 0.688 |0.884 | 1.196 | 1.105 | 3.481 |2944 |[5.723 4818

€9
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based method are quite close to those for the traditional method (near the nominal value

(1 — @)), while the likelihood intervals have smaller average length.

Appendix

Aids for producing endpoints of the intervals prescribed by (3.7) for cases of range
> 2 will be discussed in this appendix.
As mentioned in the Appendix (B) of [1], approximate values of L*(o) and M for

cases with range > 2 are

1 —Zz

L*(0) = X (- 9(=-2)

o
and

11—z

MéZn; ln(é—(b( ).

o
Substituting above two approximations into the inequality

—2(L*(o) - M) <d(n,a)

one gets

where o2 = 1 > (z; — Z)?. (This is the inequality defining the likelihood-based interval
T =1
one would obtain ignoring the rounding altogether.) Then let z;,z, be two solutions of

1 . .
the equality z—In(z) = 14+ — d(n.«a) with z; < z,. An approximation for the corrected
n

- -

g g

= TE

likelihood-based interval in the case that the range is 2 or more is (
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4 ANALYSIS OF ROUNDED DATA FROM THE
BALANCED ONE-WAY RANDOM EFFECTS MODEL

A paper to be submitted to the Communications in Statistics

Chiang-Sheng Lee and Stephen B. Vardeman
lowa State University, Ames, IA 50011-1210

4.1 Introduction

It is a practical problem that data on hand are sometimes obtained using crude gaug-
ing. We might call such data “rounded data” since they are really obtained by rounding
to the nearest unit. Do traditional statistical methods still provide good estimates of
unknown parameters when rounded data are analyzed 7 What can we do if they do not?

Building on the discussions of the interval estimation of parameters p and o for a
single rounded Normal sample in {2] and [3], we extend our discussion of rounded data
to the one-way random effects model. Usually, the balanced one-way random effects

model is expressed in the form

Yi=pite;, 1=1.2,...,m; 3=1.2.....n, (4.1)

Mr. Lee is a Ph. D. Candidate in Industrial Engineering in the Industrial and Manufacturing Systems
Engineering Department. email: chiang@iastate.edu

Dr. Vardeman is a Professor in the Statistics and Industrial and Manufacturing Systems Engineering
Departments. He is a Senior Member of ASQ.
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where the p;’s are a random sample from N(u,c2?), the €;;’s are a random sample from
N(0,0?), and the pu;'s are independent of the €;’s. The variance components o, and o
are of primary interest in this model and we concentrate our discussion on their interval
estimation.

We start with the likelihood function in the next section, then find approximate max-
imizers for the likelihood function in Section 4.3. Three special cases will be discussed
in the fourth section. Inference methods for the parameters o and o, will be discussed

in Sections 4.5 and 4.6, and final conclusions will be drawn in the last section.

4.2 The Rounded Data Likelihood Function

Without loss of generality, we assume that all observed values y;; are integers, and
utilize the vector form y = (y11, %12, --+s Y1.ns Y215 -oos Y2,ms <oy YmoLs oo Ym.n) for convenience.
The rounded data likelihood function f(y;u,o-r,0) can be found by dealing with the
N(ui,o?) conditional distributions of unrounded values given (i, 42, ..., ttm). and has
the form

flyip,07,0)
Mmoo T

¢ 2o Yi; £0.5 - 7 ;7 — 0.5 ~ : ,
- /_oo I1 lq)(yj o #)—‘D(yJ . a ) lo(pisp.or) du;

i=1 =1

m n

[TEd [[( ottt _ gtz

o

) ) 1 (4.2)

i=1 j=1

where @ stands for the standard normal cumulative distribution function. é(z; u. ;) is
the N(u,o?) density, and E; is expectation with respect to the variable y;.

Furthermore, define the log-likelihood function L(u,o-,0) = In(f(y;p.0-, 0)), two

profile log-likelihood functions

L*(or) =supsup L(u, 0., 0)
H€ER 0>0

and
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L*(o) = sup sup L(u,0-,0),

and the supremum value

M = sup sup sup L(u, o0, 0).
ueR0’~r>0 a>0

4.3 Approximate Maximizers of L(u, 0, 0)

Yi5 +0.D —uut) _ (D(le — 0.5 —',U{))’ as men-
o (2

We may sometimes approximate (®(
7z
):

tioned in [2], by ~ ¢( # - where ¢ is the standard normal density. Substiting this

into the log—hkehhood function C(p, or,0), under some circumstances

L(u,0r,0) = ln(H/ H $(LL— ”') B(i; g, ) dpsi)

m n i: )2 m (g 2
2 m 2 . 9 _ i=1 ZJ:_l(yt] - yl) _ n Zi:l(yi- — /'L)
Y in(o?) 5 Zla(o® + no?) 252 2(c? + no?)

m(n —

= C-—

where C = —mn Inv27 and Ji. = —;l——_;z—yi . This is the “exact data” log-likelihood,
appropriate if there is no rounding.

After setting three partial derivatives with respect to parameters y, o2, and o equal
to 0, one can see that the maximizers (4,52, 5%) of this approximate log-likelihood (for

parameters (u,02,0°)) are

(i — 7.)? _ fz} Yy Z] (yi — g 9)

(.., max {0, m n m(n — 1)
et 2j=1 Yij
where . = ==-=2=1°Y  These three approximate maximizers are the maximum
mn

likelihood estimates when we treat “rounded data” as “exact.”

4.4 Special Cases in the Maximization of L{y,0,,0)

[n this section, three special data types will be discussed. We will call these Case L.

Case [I, and Case III data types. For each case, we find an approximate form for the

-

supremum value M, and also indicate (62, &°) values that result from assuming the

data are “exact.”
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4.4.1 Casel

Case [ is the situation where all the observations y;; have the same value, say y;; =y
for all z and j. This case occurs often when both o and o, values are small. For example.
y=(1, 1; 1, 1) is a Case I sample for m =n = 2.

In this case, we find that the supremum value of M is 0 and conclude that there are
many triples (x, 0, o) producing nearly this supremum value. A discussion of #his point

is in Appendix (A). If we treat these Case I data as “exact,” then we get (62.5*) = (0.0).

which gives us the second characterization this data type.

4.4.2 Case I1

Case Il is the situation where observations in a given sample all have the samne value,
yi; = y; for all j. For example,y = (0, 0, 0; 2, 2, 2) is a Case II sample for ma = 2 and
n = 3. This data type occurs often when o is small.

From the discussion in Appendix (B), the supremum value of f(y;u,or,0) approxi-

mates the supremum value of ] [ @(Lg'a_—ﬁ) - (D(y_,:_()_a__—__;i) 1, which is the
i=1 T Or
likelihood function with rounded sample vy, y2, ..., ym from N(u,c2). This shows

that in Case II an approximate value for M can be computed from the singlle sample

problem.
Under this case, we get 6. > 0 and 6 = 0 when we plug the data into the formulas

in Section 4.3, which provides another way to characterize such samples.

4.4.3 Case III

Case III is the situation where if rounding is ignored the sample values cause &, = 0

m ~= _ 5 )2 ~2

1=1(y717'2 g.) -7 < 0. For instance, datay = (—1. 0; 0, 1)
" Y

makes this difference 0 and y = (1, 2, 3; -1, 3, 3) makes the same difference < 0. One

and & > 0. This requires
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obvious result is that if any sample gives §;. = y for all 7, then such a sample always has
- = 0. Such data occur with high probability when o is large and o is small.

In Appendix (C), the discussion shows that in this case the supremum value of

5+ 0.5 — i — 0.5 —

Y J H )—‘D( Yy J H )] .
o o

f(y; #,0+,0) is close to the supremum value of H H[‘I)(
=1 j=1
the likelihood function for a single rounded sample of size mn from the N(u,o?) distri-

bution.

4.5 Inference for the Parameter o

In this section, two methods of estimating the parameter o are compared. The
first one is what we call the traditional method, and the other is what we will call the

likelihood-based method. They are mainly introduced in Section 4.5.1.

4.5.1 The Construction of Confidence Intervals

The traditional method for estimating the parameter ¢ in the one-way random effects

model is to apply the fact that (with “exact” data)
=1 ?zl(yij - §i.)°

o?

2
~ Xm(n-1)-

This produces the corresponding (1 — &) level confidence interval for o

[\l z';lz;-;l(y,—j—@a){\j S D s — 9% (4.3)

2
X(m(n—-1), 2)

X(m(n-1), 1-2)
where x{,. ) is the g quantile of x? distribution with degrees of freedom r.

The (initial) likelihood-based method is to apply the result that under Hy : 0 = o9

and for large n,

SUP LR SUP,, >0 f(¥iH,0r, 00)

) ~ X21 .
sup/.zeR Supo'.,.>0 SUP,s50 f(}_’; H,Or, O') ()

—2 1n (
or to use the notation in this paper

=2 ( L(00) — M )~ X (4.4)
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Using this large n result, an approximately (1 — «) level confidence interval for the

parameter o is the set of all o points satisfying

—2(L*(o) = M) < x{, 1-a) (4.5)

4.5.2 Simulations

In this section, the Monte Carlo method is used to compare the two methods for inter-
val estimation of ¢ introduced in Section 4.5.1. First we generate m values y;, s, -... it
from N(u,02) and mn values €11, €12, .... €1.ny ---s €mn from N(0.0?). compute
yij = p:i + €,; and then round to integers. The next step is to find the traditional
interval directly from (4.3) and get the value —2 (L*(o) — M). If the interval (4.3) for
the 7th sample covers the value o, then we add 1 to a counter ¢ (“t” for the traditional
method), otherwise we do not increase it. If the inequality (4.5) is satisfied. then we add

1 to the counter [ (“{” for the likelihood-based method), otherwise we do nothing. We

1000 {1000

1000 an 1000 which are the

repeat these steps 1000 times and finally get the values
estimated coverage probabilities for these two methods.

Take the case m = n = 2 for illustration, supposing o = 0.5 at o = 0.05. Assume
the first sample is y = (—1, 0; 0. 1). Then the interval (4.3) is [0.36816. 4.44398], and

2 (£*(0.5) — M) = 0.17061. It is clear that interval (4.3) covers ¢ = 0.5 and that
—2 (£*(0.5) — M) < 3.84146, so we add 1 to both counters ¢ and [ and get t, = [, = 1.
Next, suppose the second sample is y = (0, 0: 1, 1), then the interval (4.3) degenerates

to 0 and —2 (L£*(0.5) — M) = 3.00615. Thus we have {; = 1 and [, = 2, and so on. We
t1000 L1000

1000 *" 1000~
We ran simulations for parameter/design combinations with ¢ = {0.0,0.3,0.5}, o =

{0.5,0.8,1,3,5,10}, o = {(0.5,1.0)[0.1],3,5,7,10}, (m.n) = {(2,2),(2.3),(2,5), (3, 2),
(3,3),(3,5),(4,2),(4,3), (5,2),(5,3)}, and « = {0.05, 0.10, 0.20}, (where (a, b)[c] means

repeat this processes 1000 times and finally get the values

the values from a to b with increment c¢.) After examining those results, we found
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that for fixed (m,n), they were little affected by the choice of u. Therefore, we here
represent those results in Figures 4.1 to 4.4 by presenting only the u = 0 case for
(m,n) € {(2,2),(2,5),(3,3),(5,2)}. In these figures, the solid lines identify estimated
coverage probabilities for the traditional interval (4.3), and the dashed lines identify the

estimated coverage probabilities for the likelihood-based method (4.3).

4.5.3 Improving the Coverage Probability Calibration of Likelihood-Based
Method

The figures show that the estimated coverage probabilities for the likelihood-based
method can be much lower than the nominal value (1 — &) in small samples. Adjustment
of the X?l,l—a) value in (4.5) (that is appropriate asymtotically) is needed to improve these
probabilities for small samples.

We reason that with exact data the estimation of ¢ in the one-way model is in some
sense the same problem as estimation of the standard deviation of a single distribution
based on a sample of size m(n — 1) + 1. We found in [3] that when estimating ¢ from
a small rounded normal sample, in order to maintain a nominal confidence level it was
necessary to replace an asymptotically appropriate ,\”?1,1-0) value with a larger value
we called d(n,a). We have found empirically that applying those values in the present
context cures the small-design deficiencies of the likelihood method (4.5). The method is
to replace the Xfm_a) value in (4.5) by d(m(n—1)+1, «a) from Table 3.1 of [3]. Figures
4.5 through 4.8 compare the estimated coverage probabilities for those two methods for
the same parameter combinations as in Figures 4.1-4.4, but this time the likelihood-
based method uses d(m(n — 1) + 1, a) in place of X(Zu_a) in (4.5). In the new figures,

the estimated coverage probabilities are quite close to (1 — «).
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4.6 Inference for the Parameter o,

We now turn to the problem of estimating the parameter o.

4.6.1 The Construction of Confidence Intervals

In this discussion, we adopt the method described on page 61 of the text [1] as the
“traditional” or exact data method of interval estimation for o,. In the notations of this

paper, that confidence interval for o is

S22 — 52 - \/V; S22 — 852 +/V,
[\{/ max{ 0, = iz L}, \/ma.x{ 0, = 2n+ U} I (4.6)
where
52 — n 2:7;1 (17: - g)2
1 m—1 ’
g2 _ ZimiZim (g — gi.)?
2 m(n — 1) ’
Vi = G% S+ HZS;+ G S S2,
Vo = HE S} +G3 S5+ Hyp St S2,
X(n, 1-2)
H = 44— 1 (l=1, 2),
X(n. 2)
C'2 _ (F( ny. n2; 5) —1)2_G% F(2nxyn2¢ %")_Hg
71 — )
Fln, nas 2)
H _ (1-— F(nlan: 1—%))2_H12 I?(%ll-ﬂzz 1-%) ~G§
12 =
F(n;, nz; 1-3)
ny = m—1, and
ny = m(n—1).

Our likelihood-based method is based on £*(o.), the profile log-likelihood for o

(rather than for o). The analogues of expressions (4.4) and (4.5) in this context become

=2 (LYor) — M)~ xE, (4.7)
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and
-2 (L*¥or) — M) < X%l, 1—a)* (4.8)

4.6.2 Simulations

We conducted simulations of the type described in Section 4.5.2 to compare the
traditional and likelihood-based interval estimation methods for o,. The same combi-
nations of m,n,u, and o used in Section 4.5.2 and new set ¢ = {0.5,0.8,1,3.5,10}
and o, = {(0.5,1.0)[0.1],3,5,7,10} were employed. As in the estimation of &, for fixed
(m,n), we found little dependence of the results on u, and therefore only p = 0.5 is
represented in our presentation of the results.

Figures 4.9 through 4.12 are the estimated coverage probabilities for (m,n) € {(2,2),
(3,3),(4,2),(5,3)}. As usual, the solid lines identify results for the traditional method

(4.6) and dashed lines identify results for the likelihood-based method (4.8).

4.6.3 Improving the Coverage Probability Calibration of Likelihood-Based
Method

Figures 4.9 through 4.12 show that the likelihood-based method has unacceptably

low estimated coverage probabilities, suggesting the value /\"(21‘ 1—q) 11 inequality (4.8)
should be increased to improve these probabilities. We note from Figures 4.9 through
4.12 that the estimated coverage probabilities are particularly deficient when o is large.
Arguing completely heuristically, we reason that for large o the available information
is in some sense “equivalent” to that in a random sample of size m from a N(0,02)
distribution. That suggests that once again the values we found to be effective small
sample replacements for x%h {—e) i0 the one sample context might be used. After a

variety of studies, we have found that it is effective to use d(m, ) from Table 3.1 of

[3] in the place of x7, ,_,, value in inequality (4.8). Figures 4.13 to 4.16 compare the
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estimated coverage probabilities for the traditional and modified likelihood methods for
the same parameter combinations as in Figures 4.9 through 4.12. We can see that
coverage probabilities for the likelihood-based method are much improved.

In Tables 4.1 and 4.2, we summarize simulation results of average lengths for the
traditional and modified likelihood-based methods when (m,n) = (2,2) and (5,3). These
results reveal that the traditional method has larger average interval lengths than the

modified likelihood-based method, and this situation is pronounced at (m,n) = (2.2).

4.7 Conclusions

In our simulations we found that it is useful (in computing M and checking (4.5)
and (4.8)) to make use of the cases and analysis of Section 4.5 for special data types. For
these data types, the M can be simply found by reducing the 3-parameter problem to a
2-parameter problem. Further, useful results concerning the shapes of profile likelihoods
can be directly applied to these cases from the discussion in [3].

The simulations support the following conclusions:

(1) The analysis on interval estimates of the parameters o and o, are not much affected
by changes in the value of p.

(2) In the estimation of the parameter ¢, no matter what the value of o, is, the tra-
ditional method always has coverage probabilities below (1 — «) when o is small. The
modified likelihood-based method (using d(m(n — 1) + 1, @)) doesn’t have this problem
and performs well even when o is large.

(3) In the estimation of the parameter o, it seems that both methods provide
good coverage probabilities. But upon closer investigation, the modified likelihood-based
method tends to produce somewhat shorter confidence intervals than the traditional

method.
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Table 4.1 Simulated average lengths for traditional method (¢) and
the modified likelihood-based method (L) for estimating

ar (Mmyn) =(2,2).
m=2 n=2
o 0.5 0.8 1.0 3.0 5.0
a, | a t L t L t L t L t L
0.05 | 16.022 | 9.407 | 19.903 | 11.886 | 22.221 | 13.608 | 55.149 { 35.062 | 92,291 | 58.877
0.5 {0.10 | 7.963 4.686 | 9.897 5920 | 11.047 [ 6.776 | 27.340 | 17.458 | 45.702 | 29.314
0.20 | 3.889 2.302 | 4.843 2.902 | 5.394 3.321 | 13.207 | 8.538 | 22.084 | 14.320
0.05 | 23.470 | 12.687 | 25.652 | 14.404 | 26.434 | 15.403 | 58.434 | 36.658 | 94.204 [ 59,701
0.8 {0.10 | 11.639 |6.322 | 12,738 { 7.180 [ 13.133 | 7.672 | 28.993 | 18.254 | 46.690 | 29.718
0.20 | 5.647 3.112 | 6.197 3.531 | 6.402 3.764 | 14.034 | 8.932 | 22,571 | 14.527
0.05 | 26.471 | 14.155 | 28.485 | 15.632 | 32,228 | 17.876 | 62.958 | 38.405 | 93.212 | 59.890
1.0 | 0.10 { 13.100 | 7.053 | 14.131 [ 7.793 | 16.007 | 8.911 | 31.247 | 19.129 | 46.137 | 29.816
0.20 | 6.327 3.471 | 6.866 3.838 | 7.788 4,387 |15.110 [9.376 | 22.280 | 14.586
0.05 | 76.961 | 39.084 | 78.183 | 39.776 | 76.058 | 39.009 | 91.948 | 51.291 | 114.605 | 68.163
3.0 [ 0.10 | 37.794 [ 19.439 | 38.453 | 19.825 | 37.464 | 19.463 | 45.573 | 25.574 | 56.826 | 33.959
0.20 | 18.022 | 9.381 | 18.366 | 9.644 | 17.928 | 9.515 | 22.031 | 12.553 | 27.511 | 16.648
0.05 | 124.222 | 62.935 | 123.933 | 62.981 | 127.198 | 64.575 | 132.516 | 70.476 | 151.216 | 84.532
5.0 | 0.10 { 60.944 | 31.153 | 60.849 | 31.294 | 62.472 | 32.146 | 65.552 | 35.163 | 74.935 | 42.137
0.20 } 29.021 | 14.847 | 29.000 | 14.989 | 29.776 | 15.532 | 31.503 | 17.258 | 36.241 | 20.683

16



Table 4.2 Simulated average lengths for traditional method (¢) and
the modified likelihood-based method (L) for estimating
ar, (myn) =(5,3).

m=95, n=3

a 0.5 0.8 1.0 3.0

[ ]
o

a T « t IJ ’ L i L t IJ t L

0.05 | 1.475 [ 1.270 | 1.767 | 1.530 | 1.977 | 1.724 | 4.518 | 4.051 | 7.127 | 6.524
0.5 10.10 ] 1.143 [0.999|1.386 | 1.212 | 1.550 | 1.365 | 3.535 | 3.198 | 5.562 | 5.152
0.20 { 0.831 {0.739 {1.020 | 09121 1.145 | 1.023 | 2.601 {2408 {4.097 { 3.872

0.05 [ 2.014 | 1.759 | 2.301 | 2.004 | 2.503 | 2.169 [ 4.810 | 4.260 | 7.413 | 6.640
081010115635 | 1.3562 | 1.776 | 1.568 | 1.948 [ 1.708 | 3.774 | 3.370 | 5.811 | 5.249
0.20 | 1.095 | 0.967 | 1.280 | 1.149 | 1.424 | 1.259 | 2.792 | 2.544 | 4.299 | 3.960

0.05 | 2.384 | 2.079 ] 2.649 | 2.314 | 2.867 | 2.495 | 5.027 | 4.461 | 7.581 | 6.809
1.0 [ 0.10 | 1.812 | 1.575 | 2.031 [ 1.776 | 2.212 | 1.937 | 3.943 | 3.536 [ 5.925 | 5.379
0.20 | 1.287 | 1.095 | 1.456 | 1.261 [ 1.597 | 1.390 | 2.9156 | 2.660 | 4.359 | 4.048

0.05 | 6.537 | 5.314{6.573 | 5.520 | 6.704 | 5.711 | 8.418 | 7.311 | 10.403 | 9.006
3.0 {0.10 | 4.954 | 3.868 | 4.981 | 3.952 | 5.081 | 4.204 | 6.498 | 5.712 | 8.144 | 7.151
0.20 } 3.515 | 2.612 | 3.5635 | 2.616 | 3.606 | 2.813 | 4.695 | 4.188 [ 5.991 | 5.376

0.05 | 10.646 | 8.918 | 10.937 | 9.213 | 10.859 | 9.167 | 12.091 | 10.546 | 14.208 | 12.354
5.0 (0.10 | 8.066 | 6.716 | 8.288 | 6.949 | 8.230 | 6.908 | 9.182 | 8.052 | 10.958 | 9.660
0.20 | 5,722 [ 4.721 | 5.881 | 4.894 { 5.840 | 4.832 | 6.520 | 5.734 | 7.898 | 7.076
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Appendix

Approximations for f(y; i, 0-, ) for the three data types identified in Section 4.4 are
discussed in (A), (B), and (C) separately. In these discussions. the approximation

utko

1=/ ’:°¢(x;y,a) de = [T olaip0) de. (4.9)

often applies, where ¢(z; u, o) is the N(u,o?) density and k € [3, 6] is preferred.

(A) Approximation of f(y;u,o,,0) for Case I Samples

For Case I samples, the likelihood function f(y;u,o0r,0) is simply

o 0.5 — u; y— 0.5 — y;
(7 (ot t) oY= R2 ) 7 g o) dpi )

—_00 (o8

and from (4.9), this is approximately

utkor + 0.5 — u; y—0.5—pu; n m
([T re =) — o (= I oluiipon) dp )™ (4010)
u—kor g (22
y+ 0.5 — py; y—0.5—p

From [3], the value &( ) = 1 if (u;, o) belongs to the trian-

= )—&(
0.5 — u; p; D —
gular region defined by u; € (y—0.5, y+0.53) and o € (O,min{y + : £ , Hit 2 y} R
1 1

where k; € [3,6] is selected. So for (u;.o) in the triangular region the value of (4.10) is

approximately

wtkor m
( / A(pi; o 0r) dps )™ (4.11)
u

—ko-

Moreover, the supremum value of (4.11) is 1 and is approximately achieved for (u,o-)

with (g — ko,, p+ko,) C(y—0.5, y+0.5) or equivalently g € (y—0.5, y+0.5) and
y+05—p p+05—y

{ k 3 k } ] *

To summarize, the supremum value of f(y;u,o-,0) for a Case I sample is 1 and

or € (0, min

hence M = 0. In addition. points (u¢,0,,0) with p € (y — 0.5, y +0.5) , o €
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.  Yy+05—p—kor y+05—-pu+kor 05—y+u+ko, 05—y+u —ko,
(0, min{¥ v ol ’ y+p ’ y+p 1
ky k, k, ky
y+05—p p+05—y
k ’ k

and o, € (0, min{ } ] produce f(y;p,0.,0) ~ M.

(B) Approximation of f(y;u,o,,0) for Case II Samples

For Case II samples, the function f(y;u,or,0) is

r+ [t yi + 0.5 — y; yi— 0.8 — i, ..,
H/_m [‘I’(——U—#—)—‘I’(——U‘i)] o(uis 07 dp;.

=1

0.5 — Hi

For any o, the value ®( ) — @(yi — - ) approaches 0 when y; is

yi +0.5 — p;
o
outside the interval [y; — 0.5 — ko, y; + 0.5 + ko] with k € [3.6]. So f(y;u.0,,0) can

be approximated by

rp [YitOsthe yi +0.5 — p; i =05 —pi\ o, .
/ [ q’(‘f‘——#—) - ‘I’(LT—#—) 1" &(pis p. o) dpi. (4.12)

=1 YU —0.5—kc

Numerically, the o value which maximizes the function f(y;u,o,.0) in this case is

quite small (around 107° or less). Thus we may approximate the expression (4.12) with

o [vtos i +0.5 —p; i =05 —piy .
1/ (o2t (M =22l 1 (o) dpase (4013)
i=1 y,—0.5 g g
Furthermore, for such small o, the value @(m) - @(m) is nearly
o
1 for p; € [y: — 0.5, y; + 0.3] . The expression (4.13) is then close to
™ ryi+0.5 m i +0.5— yi — 0.5 —p
I1[7 " elwimon) dus= T [o(E——E) - o £)1 (41a)
1z=] ¥ ST i=1 T T

Therefore, the supremum value of f(y; i, o-,0) for Case Il samples can be approximated
by computing the supremum value of expression (4.14), which is a likelihood function

for a rounded sample of size m from N(u,oc?) based on sample values y;, y2, --*: Ym-

(C) Approximation of f(y;u.o,,0) for Case III Samples
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From (4.9), an approximation of the function f(y;u,or,0) for Case III samples is

r [rTRer i +0.5 —p; i — 0.5 —pay .
IT /7 I (o on by (o) | (uip, o) dpse (4.15)

i=1 Ju—kor =1

Numerically, we also find that the o, which maximizes f(y; u.0-.0) is a small quantity
yi; +0.5 — Hiy (¥~ 0.5 — p; ]
o o

like 1073 or less. Thus the continuous function [] [ ®(
Jj=t
is flat for y; in interval [y — ko, u + ko.]. Hence (4.15) is approximately

A i+ 0.5 — i — 0.9 — utkor
IIT] (et o =00 28y ) [*™ 4 00) du
i=1j=1 c o n—kor
. T yi; +0.5 — i —05—p
= IIII [e(E——5) - e(E—=""H)1. (4.16)
=1 j=1

To sum up, we can approximate the supremum vaiue of f(y;u,0,,0) in this case by
finding the supremum value of (4.16), which is the likelihood function of a rounded

sample of size mn from a N(u,o?) distribution based on sample vector y.
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5 CONCLUSION

After the discussions in this dissertation, some general conclusions about the analysis
of rounded Normal data can be made.

(1) Changes in the parameter u will not much affect the properties of confidence
intervals for variance parameters ¢ or o.

(2) Traditional methods work well only when standard deviations are large.

(3) The (adjusted) likelihood-based methods have better coverage probabilities than

the traditional methods when rounding is potentially important.
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