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Interval estimators of parameters for normal one 
sample and balanced one-way random effects models 

when data are rounded 

Chiang-Sheng Lee 

Major Professor: Stephen B. Vardeman 
Iowa State University 

In standard statistical analysis, data are typically assumed to be essentially exact. 

But in fact, all real data are reported to some smallest unit of measure related to the 

precision of the device used to produce them. We might call such data "rounded" 

because they are really obtained by "rounding to something." We first discuss the 

interval estimation of the parameters fx and a when a single rounded sample comes 

from the N(yu, <x2) distribution with both parameters unknown. Then we discuss the 

interval estimation of variance components cr and aT if rounded data are from a balanced 

one-way normal random effects model. For each problem rounded-data likelihood-based 

methods are compared to naive calculations made as if observations were exact. We find 

that with some modifications the likelihood-based methods provide an effective way to 

analyze such data. 
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1 INTRODUCTION 

Introduction 

It is a practical problem that data on hand are sometimes obtained using crude 

gaging. For example, a scale might read only to the nearest pound while ounces are 

still important. We might call such data "rounded " since they are really obtained by 

rounding to the nearest unit. Furthermore, we can call them "rounded Normal data" if 

underlying exact values are from a Normal distribution. 

In standard statistical analyses, data are assumed to be essentially exact. It is 

of interest to know what happens to the statistical properties of these methods when 

rounded data are used. Do the traditional methods still work? And if they do not, what 

are reasonable ways to improve on these methods? 

Dissertation Organization 

This dissertation contains three papers that focus on finding better methods of in

terval estimation of distribution parameters when rounded data are collected. When 

rounded sample is from the N(/lz, cr2) distribution with both parameters unknown, we 

discuss interval estimators of the parameters p. and cr separately in Chapters 2 and 3. 

In Chapter 4, similar analyses are made of interval estimators of the two variance com

ponents cr and o>, for rounded data from the balanced one-way random effects model. 

In each chapter, we start by defining different types of likelihood functions (like the 
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log-likelihood function and an appropriate profile likelihood function), then discuss some 

properties of these functions for special data configurations. The properties considered 

include approximate maximizers, supremum values, and the qualitative nature of the 

functions. 

In each problem two methods are used to construct confidence intervals. One is 

a traditional method derived as if the data were exact and the other is a likelihood-

based method. After the simulation and computation, adjusted versions of the simplest 

likelihood-based methods are suggested and some related results are provided. 
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2 INTERVAL ESTIMATORS OF THE PARAMETER // 

FOR ROUNDED NORMAL DATA 

A paper to be published in the Journal of Quality Technology-

Chiang-Sheng Lee and Stephen B. Vardeman 

Iowa State University, Ames, IA 50011-1210 

Abstract 

Standard statistical methods are based on an implicit assumption that numerical data 

are exact. But in truth, all real data are rounded to some smallest unit of measure related 

to the precision of the device used to produce them. When the degree of rounding is 

severe, ignoring the rounding produces statistical methods with operating characteristics 

far from nominal. We discuss the interval estimation of the parameter n when rounded 

data come from the N(/z,cr2) distribution. 

Key Words: crude gaging, interval-censoring, likelihood, profile likelihood, coverage 

probability, average length 

Mr. Lee is a Ph. D. Candidate in Industrial Engineering in the Industrial and Manufacturing Systems 

Engineering Department, email: chiang@iastate.edu 

Dr. Vardeman is a Professor in the Statistics and Industrial and Manufacturing Systems Engineering 
Departments. He is a Senior Member of ASQ. 
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Usually, we suppose that numerical data axe exact. But in truth, all real data axe 

rounded to some smallest unit of measure related to the precision of the device used to 

produce them. Because of this, it can reasonably be assumed that a sample in hand 

was collected by "rounding to something." We will discuss the interval estimation of the 

parameter [j. when such rounded data come from the N(/z,cr2) distribution. 

2.1 Introduction 

It is an important practical problem that the collection of measurement data is 

sometimes done using relatively crude gaging. For example, a scale might read only to 

the nearest pound while ounces are still of some importance. Traditional methods of 

estimation of distribution parameters and the construction of confidence intervals are 

really based on an assumption that observed data are essentially "exact." It is of interest 

to know what happens to the statistical properties of these methods when, in fact, the 

available data are produced by relatively crude gaging. Do nominal (or exact data) 

statistical properties carry over to the case of crudely gaged data? And if they do not, 

what are reasonable replacements for these traditional methods? 

The main purpose of this paper is to investigate the properties of interval estimators 

of the parameter fj based on rounded Normal data. Two methods will be compared. One 

is the traditional t interval (appropriate for exact Normal data) and the other is obtained 

from inversion of (rounded data) likelihood ratio tests for fi. Our end goal is to find 

which  method provides  be t te r  conf idence  in terva ls  for  / J .  We f i rs t  d i scuss  the  l i ke l ihood 

function for rounded Normal data. Then we discuss the maximum likelihood estimates of 

fx and cr for two special cases. The construction of the rounded data confidence intervals 

for /i (and approximate formulas for them) will be provided. Then simulation results 

are given, and based on these, a correction to the second method for small sample sizes 

is suggested. We also compute and compare the average interval lengths for these two 
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methods for various sample sizes. 

2.2 The Model for Rounded Normal Data 

Without loss of generality, it is convenient to assume that all observations available 

for data analysis take on integer values. (Measurements can, for example, be expressed in 

an integer number of smallest possible increments above a nominal value.) One possible 

model for such data is that they arise from rounding a random sample from a Normal 

process with mean y and standard deviation cr. With this model, the probability that 

n observations Xi, X2,.... Xn take the integer values xy, x2,.... xn is 

f  ( ^ 1  ( T )  —  P v i ^ J V i  =  X i ,  A . 2  =  X 2 ,  -  •  -  1  - A n  
= =  I n )  

=  n  ( * ' + ~ M ) - $  (x <  ( 2 - D  

- C2-2» 

where $(r ) is the standard normal cumulative probability function, the product in (2.2) 

is over integer values i and nt- is the number of observed values which equal the integer 

i. The expression (2.2) can be termed the likelihood function. It will be convenient to 

work with the natural logarithm of expression (2.2) and thus define the log likelihood 

function by 

L^.a)  = £>,-. In {$ (i + 0*-")  -  $  }  •  ( 2 - 3 )  

Finally, define 

— sup a) . (2.4) 
<T> 0 

Then < 0 is often called the profile loglikelihood function for fj,, and for fixed fi 

can be explained as the "maximum" or supremum value of Z.(/z, a) over cr >0. 
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2.3 Approximate Maximizers of L(/z, a) 

Apparently, there axe no closed forms for maximizers /J and A of the expression (2.3). 

One method to get approximate maximizers (/i, à) is to apply the mean value theorem, 

which says that for F(x) a differentiate function on (a, 6) 

F(b)  — F(a)  = (6 — a)  *  F ' (a  +  e *  (b  — a) )  for some e E (0, 1). 

where F'(x)  is the first derivative of F{x) .  Putting a =  —————.b — ^  ^  ^2_ 
a a  

F ( x )  =  0 ( 2 ) ,  a n d  F'(x)  =  <f>(x)  into above expression, we get 

{* -1. » ('• -1D-5;*+ <). (2.5) 

for some e € (0,1) and <p(z) the standard Normal probability density function. 

As a convenient and simple approximation, we might let e = 0.5 in above equation and 

get 

(2.6, 

It is clear that under some circumstances this approximation is a poor one. For 

example, putting cr = 0.001, y. = 0.3 and i = 0 into (2.6), we get essentially 1 on the left 

side and essentially 0 on the right side. As a second example, suppose that again i = 0 

and cr = 0.001 but y. changes from 0.3 to 0. Then the right side of (2.6) is 398.9. which 

is much bigger than 1. The point is that approximation (2.6) can be poor if a is small. 

On the other hand approximation (2.6) works very well when cr > 2 and |——— | < 3. 
<7 

Substituting expression (2.6) into equation (2.3) produces 

L{y,cr) = * In * <p } • (2.7) 

(The rounded data log likelihood is approximately what one would get treating the 

rounded values as if they were exact Normal observations.) If we take partial derivatives 

with respect to y and cr in expression (2.7) and set them to 0, we get approximate 
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maximum Likelihood estimates of y. and cr. x and 
Tli * (z — x)2 

respectively, the 
n 

maximum likelihood estimates for a Normal model supposing the integer observations 

to be exact, not produced by rounding. 

2.4 Special Cases in the Maximization of L ( f i .  cr) 

There are two special forms of data (a:i, x2,.... x n )  that cause problems in the numer

ical maximization of L(n,cr). We will call these Case 1 and Case 2. 

2.4.1 Case 1 

Case 1 is the situation where a sample contains only one distinct value, say i0 for 

convenience- When such happens, expression (2.3) strictly speaking has no maximum 

value for cr > 0. But the supremum value of L(fi,cr) is nearly achieved for any fj in a 

particular interval (when cr is small enough). More precisely, if /z € (z'o — 0.5, f0 + 0.5), 

then 

Figure 2.1 shows a typical graph of versus fi when a sample contains only one 

distinct value. From Figure 2.1, it is easy to see that the supremum value of L{f j . , cr )  

is 0 ( i.e. sup^çfl supo.>0 a) = 0 ), and this value is approached only when y. is 

between i0 — 0.5 and i0 + 0.5. We can also see that there are two discontinuities in the 

graph, which occur at the points y = Iq — 0.5 and y = i0 + 0.5. The reason for these 

discontinuities is that the supremum value of L(io ± 0.5, cr) is —n*ln(2), which is much 

smaller than 0. 

or 

lim L(n ,  cr)  = 0. 
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o -

CM -

-n*ln(2) 

CD -

00 -

y-

Figure 2.1 Representative graph of L*{y) when a sample contains only one 
distinct value. This particular graph is for a case where a sample 
of size n = 5 contains onlv the value 0. 
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Vaxdeman and Jensen(1989) concluded that if there is only one value z'o observed in a 

given sample, we might still use jx = x = z'o and â = 0 as "maximum likelihood estimates'* 

for the parameters fx and <7, but at the same time should recognize that many different 

(fx.a) pairs with small a and fx € (z'o — 0.5, z'o + 0.5) are essentially indistinguishable. 

2.4.2 Case 2 

Case 2 is the situation where a sample contains only two different values with the 

sample range 1, say the integers z'o and z'o+1- Again, a maximum value of L(fx, a) is not 

achieved. But in this case, the supremum value of L(fx,cr) is 

*ln(—) + , (2.S) 
n n  

which is approached if j x  and cr  are chosen so that 

Po = — and P l  = , (2.9) 
n n  

where P 0  and Pi  are the probabilities assigned to integers z*0 and (z0 + 1) by the rounded 

Normal distribution. (That is, P„ =  $  ( ' °  +  k  + 0 ' 5  ~ "1  -  O + f o t  

k =  0 , 1 . )  

The two conditions in (2.9) are equivalent to the three constraints <&(— —) = 
- <7 

0, $(2*° ^ — ) == 1. and —) = ^2. simutaneously. Using these con-
<j an  

straints and the facts that $(—3) = 0 and $(3) = 1, the following two results hold. 

Result(i) If — > then cr = makes the function L{/x, a) approximate 
n ^ V n / 

its supremum value when fx belongs to the interval 

( z° + °"5 ~ + 3 ' 20 + °-5 ) ' 

Result(ii) If < —. then a = *° J" makes the function L(u .cr)  approxi-
x  '  n  2  C 1 ^ 2 - )  

mate its supremum value when f x  belongs to the interval 

3 
( io + 0.5 , to + 1.5 - 3_ ) • 
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Figures 2.2 and 2.3 show the two types of graphs possible for the function L*{y) 

in Case 2 when n,-0 ^ n,-0+i. When n,0 > n,0+1 the graph is similar to Figure 2.2 and 

when n,0 < n,-0+i the graph is similar to Figure 2.3. There is a point of discontinuity at 

y = î0 -f 0.5 in both pictures. This is because L*( i 0  + 0.5) = —n*ln(2), and this equals 

1 
the value in display (2.8) only when —— = —. In other words, if the sample contains 

n 2 
only two values with a range of 1, the function L*(n) will be continuous only when the 

two different values have the same observed frequency (i.e. when n,-0 = n,0+1). 

2.5 Construction of the Intervals for \l  

Two methods of making confidence intervals for y will be discussed in this section. 

First, if we ignore rounding and treat the rounded data as "exact" Normal data, then 

the usual (1 — a) level confidence interval for fj. is 

[ X — -J= * *(n-l, l-f), Ï + ) ] , (2.10) 

where s = . ^ ̂ • —. and is (1 — |-) quantile of the t  distribution with 
,=i (n ~ •*•) 2 

(n — 1) degrees of freedom. 

Second, a method of explicity using the rounded data joint distribution in display 

(2.1) to construct the confidence intervals for y is to invert likelihood ratio tests of 

Ho : y = and apply the (asymptotic) chi-square null distribution associated with the 

likelihood ratio test statistic (see, for example, Bickel and Doksum (1977) page 229). 

That is, if fi = ̂ t0, then 

- 2 , I n (  "Po./(**>•*) , _ 
supCT>0 sup^efi /(x; y,a) 

(where /(x;/n,a)  is the likelihood function described in expression (2.1)). Or using the 

notation in this paper, if fj, = fi0 

- 2 * (  r w - s u p Z / w  ) - % ^  .  ( 2 . 1 1 )  
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n* ln(2) 

Figure 2.2 Representative graph of when a sample contains two dis
tinct values with range of 1. This particular graph is for a case 
where a sample of size n = 5 gives no = 3, ni = 2. 
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In [(^)n'°* 

(2^tl)n,0 + l] 

—n*ln(2) 

CO 

in 
ri 

(0 
CO I 

N 
CO 

CO 

CO 

0) 
CO 

Figure 2.3 

0.4 0.5 0.6 0.7 0.8 

Representative graph of L * ( f i )  when a sample contains two dis
tinct values with range of 1. This particular graph is for a case 
where a sample of size n = 5 gives no = 2, rii = 3. 
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(Note that sup^efi L'(fi) is the supremum log-likelihood value.) 

Given a desired significance level a, we can construct an interval of means /j. satisfying 

the inequality 

sup < ^ * X(i,i-Q) , (2.12) 
i xÇR — 

and conclude from the approximation (2.11) that the resulting interval has (asymptotic 

or) approximate coverage probability (1 — a). 

For the rest of this section, we consider the nature of the interval specified by (2.12) 

in Case 1 and Case 2 discussed in the previous section. 

2.5.1 Case 1 

From Figure 2.1, it is easy to see that if n * ln(2) > | * X(i,i_0)' then any y. E 

(z'o — 0.5, z'o+ 0.5) will satisfy inequality (2.12). That is, the interval specified by (2.12) is 

(z'o — 0.5, z'o+ 0.5). For example, if z'o = 0, n = 5 and a = 0.05, the above inequality holds 

and hence the confidence interval for fi is (—0.5,0.5). In fact, if n > 3 and a > 0.05, 

then the confidence interval (2.12) for Case 1 is always (i0 — 0.5, z0 + 0.5). This interval 

is much wider than the t interval degenerate about z'o (that is prescribed by equation 

( 2 . 1 0 )  s i n c e  x  =  z ' o  a n d  s  =  0  i n  C a s e  1 ) .  ( N o t e  b y  t h e  w a y ,  t h a t  f o r  r o u n d e d  d a t a  w i t h  a  

range of 0, neither of the two methods we're considering produces intervals that change 

with n or a.) 

2.5.2 Case 2 

When the range of a sample is 1 (and the graph of L * ( f i )  looks like Figure 2.2 or 

Figure 2.3) a numerical search is required to find the interval described by display (2.12). 

However, in part (A) of the Appendix, we provide useful empirical approximations for 

the end points of the likelihood-based intervals for this case. (Part (B) of the Appendix 
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provides corresponding approximations for the situation where the range of a sample is 

2 or more.) 

2.6 Simulations 

In this section, we use the two methods discussed in previous section to find intervals 

for the parameter /z from simulated Normal samples rounded to the nearest integer. 

F i rs t ,  we  randomly se lec t  a  sample  of  s ize  n f rom a  Normal  d is t r ibut ion  wi th  mean f j .  

and standard deviation a. After getting the exact data, we round these to integers, then 

apply formulas (2.10) and (2.12) to compute the confidence intervals for the parameter 

fj.. The last step is to check whether the intervals contain the fj or not. If. for a given 

method, the answer is "yes," then we increment a counter (t or c respectively For methods 

(2.10) and (2.12)) by 1. If the answer is '"no," the counter is not incremented. This is 

repeated 1,000 times, and so we obtain counts fiooo and c100o- The ratios and 

are then Monte Carlo estimates of the actual coverage probabilities for the nominally 

(approximately) (1 — a) level confidence procedures. 

To illustrate, suppose an initial random sample of size n = 10 taken from the Normal 

distribution with fi = 1.0 and a = 0.25 produces rounded data with n0 = 2 and ni = 8. 

After computing, we can get (0.556,1.044) from formula (2.10) and (0.5.0.996) from 

formula (2.12) when a = 0.10. It is then obvious that only the ^-interval contains the 

true parameter p. = 1.0. so we set the counters tx = 1 and ct = 0. Then suppose that a 

second rounded Normal sample contains n = 10 values = 1.0. For this second sample, 

the (-interval is degenerate at 1. and the interval defined by (2.12) is (0.5, 1.5). In this 

case we will increment both t and c by 1 and have ^ = 2 and c-i — 1. And so on through 

1,000 samples. 

Different values of f i , cr ,n ,  and a were used in the simulations to provide a thorough 

comparison of the two methods. We considered fj, = [0, 1.0](0.1), a E {0.01_ 0.25, 0.5, 
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1.0, 1.5, 2.0}. n = [5, 20](5), and a E {0.05, 0.10, 0.20}. where [a,6](c) means the 

values from a to b with increment c. Figures 2.4 and 2.5 are graphs of the estimated 

coverage probabilities for the (-intervals and ^-intervals (2.12) for the n = 5 and n = 15 

cases. In those graphs, the solid line indicates the estimated coverage probability for 

the (-intervals, and the dashed line indicates the estimated coverage probability for the 

^-intervals. (The actual coverage probabilities are symmetric about y = 0.5. so for a 

g iven  <r ,  n and a we have  averaged es t imated  coverage  probabi l i t ies  for  ( i  and (1  — y . )  

before plotting.) 

After analyzing these graphs and similar ones for the n = 10 and n = 20 cases, we 

can make several conclusions: 

(1) When a is small, say a = 0.01, the graphs display basically the same pattern 

for all combinations of n and a. We can also see that the coverage probability for the 

likelihood method (2.12) is almost always bigger than that for the t method, except for 

the special points [J, — 0, 0.5, and 1.0. These points deserve explanation. 

First, we focus on the coverage probabilities for the likelihood-based intervals (in

dicated by the dashed lines on the Figures 2.4 and 2.5). If 0.0 < /j < 0.5 and a is 

"small"(here the word "small" means that a satisfies <$>(— — ) — <E>(—— — ) = 1). 
cr <T 

then all of the "exact** sample will typically fall below 0.5 and the rounded values will 

all be z'o = 0. Similar reasoning applies to the interval 0.5 < \x < 1.0, but this time 

all rounded data will typically have the value 1. Because the interval for /j. in Case 

1 is always (i0 — 0.5, i0 + 0.5). the true parameter n is essentially always contained in 

the interval. That's why the estimated coverage probabilities for the likelihood method 

(2.12) always have the value 1. But when fj. = 0.5 and a is small, the values in the 

rounded sample will typically be a (binomial) mixture of 0's and l's, so the coverage 

probability will be smaller than 1. 

Second, we check the solid lines on the pictures and consider the t  interval coverage. 
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: Traditional method 
: Likelihood-based method 

0.0 02 Œ4 0£ 08 1f 0.0 02 14 0.6 08 JJO Of 02 0.4 O S  Of ID Of 02 0.4 Of Of If Of 02 0.4 Of Of If 0.0 02 0.4 0.6 Of If 

0.0 02 0.4 Of Of If 0.0 02 0.4 Of Of If Of 02 0.4 16 Of If Of 02 0.4 06 Of If 0.0 02 04 Of Of If Of 02 0.4 0.6 OS If 

00 02 04 0.6 Of If Of 02 0.4 Of Of If Of 02 0.4 Of Of If Of 02 0.4 Of Of 1.0 0.0 02 0.4 Of Of If 

Figure 2.4 Estimated coverage probabilty for sample size n = 5. 
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: Traditional method 
: Likelihood-based method 

M 02 0.4 06 08 U) 00 02 0.4 06 OS 1.0 M 02 04 OS 08 1.0 00 02 04 06 08 W 00 02 04 0.6 08 1.0 

OJ) 02 0.4 06 08 IX) OX) 02 0.4 06 0.8 1J) 00 02 0.4 05 08 ID 0.0 02 04 0.6 0.8 1.0 00 02 04 OS 0.8 1.0 OJ) 02 04 0£ 08 TJ) 

0.0 02 0.4 0.6 OJ 1.0 OJ) 02 04 06 OS 1J) OJO 02 0.4 06 Oi T.O OJ) 02 0.4 0£ 08 1J) OJ) 02 04 Of 08 ID 00 02 0.4 0.6 08 1.0 

Figure 2.5 Estimated coverage probability for sample size n = 15. 
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The solid lines indicate coverage probabilities larger than 0 at [JL = 0. 0.5 and 1.0. but 

0 probabilities for other [i. Since when a is small, the rounded samples all tend to 

contain the single value 0 if n G [0,0.5) or the value 1 if ji G (0.5,1.0], the t method 

tends  to  produce  in terva ls  degenera te  a t  x  — 0 or  x  = 1.  So  the  method brackets  f i  

with probability near 1 only when fi = 0 or fj. = 1. This explains why the coverage 

probability is always 1 at the two points fi — 0 and fi = 1. but is 0 for /i € (0,0.5) and 

H 6 (0.5,1). As to the situation when fi = 0.5, the same kind of reasoning applies here 

as was applied to the method (2.12). 

(2) When a grows bigger, say cr > 0.5, then all the graphs indicate that the coverage 

probability for the t method is closer to the nominal probability (1 — a.) than that for 

the likelihood method. The graphs show that the actual coverage probabilities for the 

likelihood method approach the nominal level (1 — a) as n increases. But they are still 

lower than the values one gets from t method. 

2.7 Improving the Coverage Probability Calibration of the 

Likelihood-Based Intervals and Final Comparisons to the 

f-Metliod 

The simulation results in previous section show that for small n the coverage proba

bility for the method based on inversion of the likelihood ratio tests is much lower than 

the (desired) nominal value (1 — a) when applied exactly as in (2.12), particularly for 

large cr. This suggests that for small n, adjustments to the \'(i,i-0) values appearing in 

(2.12) are needed. In other words, one might try to find an appropriate value c(n,a) to 

replace xfi.i-a) in (2.12) so that 

Pr[  - 2 * (L*( f j . )  — M)  < c(n ,a)  ] > (1 - or) , 
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for most ( f i , cr )  pairs. {M continues to be the supremum value of the log-likelihood 

function.) If this caji be done, we can then use the likelihood-based intervals defined by 

sup £*(//)-L*(^) < J-*c(n, a) . (2.13) 

It might be expected that for large cr ,  the likelihood ratio test based on "rounded" 

data is equivalent to the likelihood ratio test of the same hypothesis of H0 : [i — no based 

on "exact" data. The (standard) development of this exact data test (see Bickel and 

Doksum (1977,  pages  209-212))  shows tha t  the  exac t  da ta  vers ion  of  —2 *  (L ' ( f j . )  — M)  

is 

n . In [ 1 + ]. 
n — i s 

/rï( X ) 
Now, with exact normal data T = is well known to have a (n_1 distri-

s 

bution. This suggests that a choice of c(n, a) likely to produce correct large cr coverage 

probabilities is 

c(t2,q) = n * In ( (n 1,1 2 * + 1), 
n — 1 

for ((n-i.i-y)? the 1 — f quantile of the tn-i distribution. 

Table 2.1 gives c(n, a) values for different combinations of n and a. We have applied 

these c(n, ct) values to make Figures 2.6 to 2.9 giving estimated coverage probabilities 

for sample sizes n E {2, 5, 10, 15}, means p. = [0, 1.0](0.1), and standard deviations 

cr E {0.01, 0.25, 0.5, 1, 5, 10}. In these figures, the solid lines indicate the coverage 

probability from (-method, and the dashed lines indicate the coverage probability from 

likelihood-based method when c(n, a) is used. Comparing Figure 2.4 to Figure 2.7 and 

Figure 2.5 to Figure 2.9, we can see that when a > 0.5, using the c(n,a) values makes 

the coverage probabilities much closer to the desired value (1 — a), and does so without 

changing much when cr is small (e.g. cr = 0.01). 

In addition to estimating coverage probabilities we also ran simulations to compare 

average interval lengths for the (-method and likelihood-based method. Tables 2.2, 2.3, 
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: Traditional method 
: Likelihood-based method 

sx$na= 10 
a»ta= 0.1 

OJD 02 0.4 0.6 Oi 1j0 

mu 

OJ] 02 0.4 Oi Oi 1.0 

mu 

0.0 02 0.4 Q£ 0J 1.0 

mu 

QJO 02 0.4 0.6 0J 1.0 

RU 
0.0 02 0.4 Qi 0i m 

mu 

0JJ 02 0.4 Oi Oi 1.0 

mu 

Figure 2.6 Estimated coverage probabilty for sample size n = 2. 
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: Traditional method 
: Likelihood-based method 

OS 02 0.4 06 03 1.0 0.0 02 04 OS 08 IjO 00 02 04 Oi 08 1J) OJ) 02 04 06 0B U) OO 02 04 0.6 08 1JJ OJ) 02 04 OS 08 1X1 

OJ) 02 0.4 OS 08 1J) OJ) 02 0.4 06 03 1.0 OO 02 04 OS 03 13 OJ) 02 0.4 06 03 1.0 OO 02 04 OS 03 1.0 OJ) 02 04 OS 03 IS 

0.0 02 0.4 OS 03 1J) 0.0 02 0.4 0.6 03 I J) OS 02 0.4 0.6 08 1.0 OS 02 0.4 OS 03 1.0 OS 02 0.4 06 03 IS 0.0 02 04 OS 03 IS 

Figure 2.7 Estimated coverage probability for sample size n = 5. 
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: Traditional method 
: Likelihood-based method 

scma= 
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mu 

0Û 02 04 Oi 08 U) 
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00 02 0.4 06 03 1-0 

mu 

OJ} 02 0.4 06 Oi 1i 

tru 
OO 02 04 Oi 08 

mu 

OO 02 04 0.6 08 14 
ITU 

W 

OD 02 0.4 0.6 03 1.0 0.0 02 0.4 0.6 03 ID OJ) 02 0.4 06 03 ID 0.0 02 04 0.6 Oi ID 

OD 02 0.4 Oi Oi ID 0.0 02 0.4 0.6 Oi I J) 0.0 02 0.4 Oi 03 ID 0.0 02 0.4 Oi 03 ID OD 02 0.4 0.6 03 ID OD 02 0.4 06 Oi ID 

Figure 2.8 Estimated coverage probability for sample size n = 10. 
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: Traditional method 
: Likelihood-bcised method 

OJ) 02 0.4 Oi Oi 1J) OJ) 02 0.4 06 OJ tj) OJ) 02 0.4 06 OS 1.0 OJ) 02 04 0.6 OS I J) Oil 02 04 0.6 08 1J) OO 02 0.4 OJ OS 10 

0.0 02 04 0.6 08 1J) 0.0 02 0.4 06 08 I J) OO 02 0.4 OJ OJ I J) 0.0 02 04 OJ OJ I J) 

0.0 02 0.4 0.6 OJ I J) OJ) 02 0.4 06 OJ 1-0 OO 02 04 OJ OJ 1.0 OJ) 02 0.4 06 08 1J) OJ) 02 0.4 OJ OJ 1J) 0.0 02 04 OJ 08 I J) 

Figure 2.9 Estimated coverage probability for sample size n = 15. 
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Table 2.1 c(n, a )  values for different n  and a .  

n  
a  

n  0.05 0.10 0.20 

2 10.18 7.42 4.70 
3 6.98 4.98 3.06 
4 5.90 4.18 2.55 
5 5.37 3.80 2.31 
6 5.05 3.57 2.17 
7 4.84 3.42 2.08 
S 4.70 3.31 2.01 
9 4.59 3.23 1.96 

10 4.50 3.17 1.93 
15 4.26 3.00 1.82 
OO 3.84 2.71 1.64 

and 2.4 present average lengths for 1,000 t  intervals (from(2.10)) and 1,000 likelihood-

b a s e d  i n t e r v a l s  ( f r o m ( 2 . 1 3 ) )  f o r  v a r i o u s  f / ,  c r ,  a n d  n .  

The general character of the results in these tables is as follows: 

(1) At y  = 0.0 and 0.25, the t  method average length is much smaller than the 

likelihood or '"x2" method average length for cr = 0.01 and 0.25. And as cr grows, the 

mean lengths become quite similar. The difference in lengths when cr is small derives 

from the fact that many of the samples have range 0, and the poor coverage probabilities 

for the t method evident in Figures 2.6-2.9 show the impact of the small mean lengths 

for the t method. 

(2) At f j ,  = 0.5 the average lengths for two methods are close to each other. 

2.8 Conclusion 

In light of the whole discussion in this paper, we reach the following general conclu

sions about how to handle crudely gaged data in the interval estimation of /i. 



www.manaraa.com

Table 2.2 The average simulated lengths for t  and the likelihood methods 
for /t = 0.0. 

f.i = 0.0 

a  0.01 0.25 0.50 1.00 5.00 
n  o t  " X2 " t  " A' 2 " t  « x/2 » t  « X2 » t  Y " 

0.05 0.000 6.167 0.889 6.596 6.760 9.726 14.574 16.050 69.795 70.098 
2 0.10 0.000 3.094 0.442 3.304 3.359 4.846 7.242 7.982 34.681 34.835 

0.20 0.000 1.571 0.215 1.669 1.637 2.392 3.530 3.907 16.906 16.997 
0.05 0.000 1.553 0.391 1.727 2.241 2.710 4.508 4.601 21.663 21.651 

3 0.10 0.000 1.124 0.266 1.232 1.521 1.859 3.060 3.126 14.702 14.697 
0.20 0.000 1.000 0.171 1.032 0.982 1.286 1.976 2.036 9.494 9.483 
0.05 0.000 1.035 0.258 1.122 1.553 1.753 2.998 3.013 14.639 14.628 

4 0.10 0.000 1.000 0.191 1.026 1.148 1.345 2.217 2.234 10.826 10.817 
0.20 0.000 1.000 0.133 0.969 0.799 0.998 1.543 1.560 7.534 7.523 

0.05 0.000 1.000 0.236 1.033 1.276 1.402 2.465 2.459 11.897 11.897 
5 0.10 0.000 1.000 0.181 0.979 0.980 1.108 1.893 1.889 9.135 9.143 

0.20 0.000 1.000 0.130 0.928 0.704 0.833 1.361 1.356 6.570 6.567 
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Table 2.3 The average simulated lengths for t  and the likelihood methods 

for ft = 0.25. 

f i  = 0.25 

a  0.01 0.25 0.50 1.00 5.00 
n  o t  « Y 2 " t  « y 2 » 

À t  « ^2 « t  « x/2 » t  " x2 " 
0.05 0.000 6.167 3.138 7.680 7.446 10.140 14.485 16.027 72.959 73.282 

2 0.10 0.000 3.094 1.559 3.837 3.700 5.051 7.198 7.971 36.254 36.418 
0.20 0.000 1.571 0.760 1.917 1.804 2.489 3.509 3.902 17.672 17.770 
0.05 0.000 1.553 1.185 2.056 2.277 2.681 4.507 4.608 21.742 21.727 

3 0.10 0.000 1.124 0.804 1.434 1.545 1.837 3.059 3.131 14.755 14.748 
0.20 0.000 1.000 0.519 1.082 0.998 1.260 1.975 2.041 9.528 9.516 

0.05 0.000 1.035 0.822 1.318 1.639 1.757 2.955 2.968 14.805 14.794 
4 0.10 0.000 1.000 0.608 1.090 1.212 1.330 2.185 2.200 10.948 10.940 

0.20 0.000 1.000 0.423 0.906 0.844 0.964 1.521 1.536 7.619 7.609 
0.05 0.000 1.000 0.676 1.098 1.314 1.384 2.358 2.362 11.418 11.418 

5 0.10 0.000 1.000 0.519 0.943 1.009 1.081 1.810 1.817 8.767 8.775 
0.20 0.000 1.000 0.374 0.798 0.726 0.798 1.302 1.307 6.305 6.303 
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Table 2.4 The average simulated lengths for t  and the likelihood methods 

for /( = 0.5. 

10 <d
> 

II 

a  0.01 0.25 0.50 1.00 5.00 
n  Q I  " X2 " I  " X2 " t  " x2 " t  « X 2  » t  " X2 " 

0.05 6.391 9.249 6.035 9.077 7.459 10.077 14.320 15.658 68.588 68.904 
2  0.10 3.176 4.608 2.999 4.529 3.706 5.019 7.116 7.786 34.082 34.242 

0.20 1.548 2.275 1.462 2.23G 1.807 2.473 3.469 3.810 16.613 16.708 
0.05 2.169 2.474 2.166 2.473 2.493 2.765 4.590 4.666 22.463 22.446 

3 0.10 1.472 1.691 1.470 1.691 1.692 1.887 3.115 3.170 15.244 15.237 
0.20 0.950 1.150 0.949 1.150 1.093 1.270 2.011 2.061 9.844 9.831 

0.05 1.517 1.575 1.464 1.557 1.715 1.779 2.974 2.983 14.725 14.713 
4 0.10 1.122 1.183 1.083 1.177 1.268 1.334 2.199 2.210 10.889 10.880 

0.20 0.781 0.845 0.753 0.851 0.882 0.951 1.530 1.542 7.577 7.567 

0.05 1.199 1.221 1.201 1.219 1.382 1.398 2.455 2.453 11.680 11.680 
5 0.10 0.921 0.947 0.922 0.944 1.061 1.081 1.885 1.885 8.969 8.977 

0.20 0.662 0.689 0.663 0.686 0.763 0.783 1.356 1.354 6.450 6.448 
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(1) When it is a priori clear that cr could be small in comparison to "rounding 

precision" and one obtains a rounded sample with all values equal to z0. then there is 

really no way to estimate jj. reliably beyond saying fi € (z'o — 0.5, z0 + 0.5). (Of course, 

in such cases, the best option in terms of quality of estimation is to find another gage 

that is not so crude.) 

If obtaining better gaging is not an option and it is a priori clear that it is possible 

that cr < 0.5, it is best to use the likelihood-based method (2.13), since the simulation 

results tell us that it gives actual coverage probability closer to (1 — a) than that of 

the (-method. (At the same time we must remember that the likelihood-based interval 

covers more often than we expect from its nominal level.) 

(2) When one is a priori sure that a > 0.5, both methods (2.10) and (2.13) can be 

used except for n = 2. The simulations show that the likelihood-based method is much 

better than the (-method when a = 0.5 and 1. See Figures 2.6. 

Appendix 

In some situations it can be helpful to have approximations for the end points of the 

likelihood-based intervals. We provide such in this Appendix. 

(A) Approximations for Case 2. 

Continue to let n,-0 be the number of values z'o observed. n,0+l be the number of values 

(z'o + 1) observed, and take M to be supremum of the log-likelihood given in display (2.8). 

To find approximations for the intervals prescribed by display (2.13) in Case 2, we 

plug = 
\ 

"  ( X {  —  U ) 2  

Y — into the approximation (2.7) modified by an empirically de-
.=l n 

rived "correction factor" k to produce the approximation 

'o+i i y 
= k * m * ln(— * <£(——)) . 

x=i'o 
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k 

for 

1 , if rz,-0+i < n,-0 when computing a lower bound for f j .  

0.975, if n,0+1 < n20 when computing an upper bound for fi 

0.975, if n,0+1 > n,0 when computing a lower bound for /J. 

5^5=5, if n,0+1 > n,•„ when computing an upper bound for fi. 

Substituting this approximation into display (2.13) and solving the quadratic equation 

in f i  that results when there is equality, we get two solutions for f x . For convenience in 
n (Xi _ x)2 

what follows, let w  =  (2 * M  — c(n, a ) ) / n  and <x2 = ̂  
1=1 71 

Case 2a : When n,0+i < n,0 is observed. 

If (n * ln(2) + M) > j  *  c(n .a) ,  then the interval for f j .  prescribed by display (2.13) is 

approximately 

( x — ^/(e~1~u'/(2 * 7T)) — <T2, iQ + 0.5 ). (2.14) 

Otherwise, the interval for fx is approximately 

( x — \J(e-1-<t'/(2 * tt)) — cr2, x + y/(e-1-(W°-9"5)/(2 * tt)) — Ô-2 ) (2.15) 

Case 2b : When n,0+1 > nio is observed. 

If (n * ln(2) + M )  > | * c { n , a ) ,  then the interval for f i  prescribed by display (2.13) is 

approximately 

(  i 0  + 0.5 . x  +  x/(e-i-(o.975-M/(2*7r)) -Ô-2 ). (2.16) 

Otherwise, the interval for ji is approximately 

{ x  -  y(e-l-(w/0.9T5)/(2 * -)) - Ô-2, Z + y(e-l-(0.9T5.u,)/(2 *TT)) ). (2.17) 

Consider an example. Suppose a sample consists of data x = (0,0,1,1,1,1,1,1,1,1) 

and take a = 0.10. Then we have iQ = 0,x = 0.8, n,0 = 2, n,0+1 = 8, c( 10,0.10) = 
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3.17, and M  = —5.00402. Because n,-0+1 > nt-0, and (10 * ln(2) + M ) > | * c(10,0.10). 

we apply expression (2.16) to get the interval (0.5, 1.02718). If we use the same data 

but take or = 0.05, then (10 * ln(2) + M) < | * c(10,0.05)(= 2.25). so we apply ex

pression (2.17) and get the interval (0.48492, 1.08444). The "exact" intervals for fi 

computed from expression (2.13) are (0.5, 1.02133) and (0.48003, 1.08676) for a = 0.10 

and a = 0.05 respectively, which suggests that formulas (2.16) and (2.17) provide useful 

approximations. 

(B) Approximations when the sample range is 2 or more. 

To approximate the likelihood-based intervals for general case, we may apply the 

Mean Value Theorem and the approximate maximizers fj, and cr mentioned before the 

asymptotic result (2.11). That will give us 

—2 * — sup 

= —2 * { 53n« * * ln("r * <?( - X )) } 
, •  {  <J  cr  

l  l ° 2  \ = —n* ln( —), 

where ^ ~ ̂  and â2 = Ê ifLzll!. 
•f, " tt n 

After solving the quadratic equation 

—n *  ln(—) = c(n, a), 

one has the approximation to interval (2.13) 

/ - . / c(".o) _ „ / C(".Q) 
(  x  — cr  *  y  e  »  — 1 ,  z  +  c r  *  V e  "  — 1  )  

In fact, the reader may verify that substituting the earlier experssion for c(n, a) here, 

this interval is exactly the usual "t" interval obtained treating the data as exact. 
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3 INTERVAL ESTIMATORS OF THE PARAMETER <j 

FOR ROUNDED NORMAL DATA 
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3.1 Introduction 

Usually in the point estimation of parameters and the making of corresponding con

fidence intervals, data are assumed to be essentially "exact." But in practice, data are 

sometimes obtained using crude gaging. For example, a scale might only read to the 

nearest pound, while the ounces are still important. We will call such crudely gaged 

data "rounded." 

The following questions arise when we analyze crudely gauged or rounded data. 

Do the traditional estimation methods still work well on these rounded data? What 

is an alternative method if they do not? In [1], we discussed interval estimation of 

the parameter y when rounded data come from the Normal distribution with y. and a 

unknown. We found that the answer to the first of these questions depends strongly on 

the (unknown) value of a. 
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In this paper, we consider interval estimation of the parameter a when rounded data 

come from a Normal distribution with both parameters y and a unknown. Two methods 

will be compared. One is the traditional (exact-data) xfn-i) method and the other is 

based on inversion of rounded data likelihood ratio tests concerning cr. Appropriate 

likelihood and profile loglikelihood functions will be introduced in the next section. 

Approximate maximizers of the likelihood, two special cases and the nature of the profile 

loglikelihood will be discussed in Sections 3.3 and 3.4. The initial constructions of the 

confidence intervals for the parameter cr are shown in Section 3.5. Initial simulations 

are described in Section 3.6. In Section 3.7 we improve the large cr properties of the 

second method by replacing the large n critical values for the likelihood ratio tests with 

more conservative critical values and study the performance of the modified intervals. 

In Section 3.8 we consider an additional improvement of the second method aimed at 

correcting remaining small cr deficiencies of the method. Final conclusions are drawn in 

the last section. 

3.2 The Model for Rounded Normal Data 

Without loss of generality, we assume observations are integers. We assume they 

are obtained by rounding the numerical values from a Normal sample. With this model 

assumption, the probability that n observations Xi, X2, A'n take the integer values 

 ̂11 ̂  21 ^71 IS 

/(x; f j - - ,  c r )  =  Pr(Xi  =  x i ,  X 2  = x 2 , . . . .  A'n = x n )  

=  n  [ $ (  = . + 0 . 5  -  ) - $ (  X . - - 0 . 5 - / 1  ^  

=  n  m  l + 0 f - f '  ) - * (  r ,  ( 3 . 1 ,  

where $(r) is the standard Normal cumulative probability function, the product in (3.1) 

i s  over  in teger  va lues  z ,  and  n, -  i s  the  number  of  observed  va lues  which  take  the  va lue  i .  
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It will be more convenient to work with the natural logarithm of the function in 

display (3.1), and we thus define the log-likelihood function by 

LM =  b | t ( '  +  0 - 5 - " )  -  ) ] .  
•  cr  cr  

Also, we can let 

L*(cr) = sup L( f i ,  or)  
f iQR 

be the profile log-likelihood for cr and denote by M the supremum value of the function 

M =  sup sup L ( / J . ,  a ) .  
*i€R <7>0 

3.3 Approximate Maximizers of L(/z, cr) 

There are no closed forms for values /z and cr  maximizing the function L(/x, cr). An ar

gument presented in [1] says that under some circumstances, fj. and cr maximizing L(fi, cr) 

are approximately x and 
A 

n ^ (*C{ —~ 37 j ̂  
T. — respectively, the maximum likelihood estimates 
i—l  "  

for a Normal model supposing the (integer) observations are exact, not produced by 

rounding. 

3.4 Special Cases in the Maximization of L(n ,  a)  and the Nature 

of L*(cr)  

In two special cases, many ( f i ,  a )  pairs nearly maximizing L(y ,a)  will be indistin

guishable in practice. We will call these Case 1 and Case 2. (The word "indistinguish

able" here means that all of these pairs give L(/j.,cr) near M.) 
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3.4.1 Case 1 

Case 1 is the situation where ah the observations in a sample have the same value, 

say z'o- In this case, 

L{^)  = n  ln[g( + °-5 ) - *( '° ' °'5 ~ " )]. (3.2) 
<7 (J 

The supremum value in display (3.2) is 0 and is approached when the pair { f i . cr )  is such 

that $(?° ^ ^ — ) = 1 and $(— ———) = 0. Applying the facts that $(> 3) = 1 
<7 <7 

and 0(< —3) = 0, L ( / J , C T )  in display (3.2) approximates its supremum value 0 if { f i , cr )  

is in the triangular region of the ( f i ,  cr)-plane where f i  € (z0 — 0.5, z'o + 0.5) and cr 6 
,n - , zo + 0.5 — fi  f t  + 0.5 — z'o, i 
(0, mm( , ) J. 

3.4.2 Case 2 

Case 2 is the situation where a sample contains only two different values with sample 

range 1, say the integers z'o and z'o + 1. As mentioned in [1], the supremum value of the 

log-likelihood for Case 2 is approached when <&(— ——— ) = 0, $(*"° ^ ^—— ) = 
cr <j 

—— and $(-^ — ) = 1. and has the form 
n cr 

n.-„ InC™^2") + ni'0+i ln( I^"rl (3.3) 

where n,0 and n,0+i are the numbers of z'0 and z'o + 1 observations in the sample. 

Applying above three conditions together with the facts that <£>(> 3) = 1 and 

$(< —3) = 0, the following identifies (effectively indistinguishable) (fi, cr) pairs nearly 

maximizing L(/i,cr). 

Result : In Case 2, the function L( f i .cr )  approximates its supremum value (3.3) when 

6 (0' 3+ |$~i(^)| )? and fJ = io + °-5 ~ CT-
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3.4.3 Typical Plots of L"(cr)  

In Figure 3.1, we present representative graphs of L*{a)  for Case 1, Case 2, and the 

case with sample range > 2 (using the samples (1,1,1,1.1), (0,0,1,1,1), and (-1,-1.0,1.1) 

respectively). On this plot, A x  = ^ and A2 = , ^ * wW—— and the intervals 
6 3 + |$-I(_JL)| 

(0, Ai) and (0, A2) are sets of cr's for which L' (a)  is nearly the supremum value. A3 = 

fxt" — 
. yj — is nearly the maximizer of L' (cr)  in this instance of n = 5 observations 
\j i=i n 

with range 2. 

3.5 Confidence Intervals for the Parameter a 

There are two methods that will be used here to set confidence intervals on the 

parameter a. We will call these the traditional method and the likelihood-based method. 

The traditional method is based on the fact that without rounding. 

(n - l)s2 

X(n—1)' (3.4) 

1 n 

where s2 = ~ %)^- Applying the property (3.4), one can get the usual 
71 

~ * i=i 
("exact data") intervals for cr2 to be 

X ( n — 1.1 — y ) 

and (taking square roots) intervals for a 

r E L i ( = , - z ) :  
I ..2 ' .2 J-

V2 

\ ( n — l , f )  

[ 
\ 

Er=i(^- -x)2 

X(n—1,1 — y) \ 

Er=i(:g.- - *)2 
] •  (3.5) 

(xfn-i,p) is the p quantile of the %2_^ distribution.) We will consider naively plugging 

integer-rounded data into these exact data formulas. 
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o 

<N 

Casel 

Case 2 

(0 

Case with sample range >=2 œ 

o 
i 

A3 A1 A2 2.0 1.0 1.5 0.5 0.0 

Figure 3.1 Representative graphs of L*(cr)  for Case 1, Case 2, and a case 
with sample range > 2. (These particular graphs are drawn 
under the samples (1,1,1,1,1), (0,0,1,1,1), and (-1,-1,0,1,1).) 
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The likelihood-based method is based initially on the asymptotic result that under 

H Q  :  a  = cr 0  and for  la rge  n 

-2 ln( _ f 
sup^GR suP(7>0 /(x; f i ,  cr )  1  '  

Or, using the notations in this paper, for large n 

—2 (Z,*(cr0) — M) ~ X(i)-

Using approximation (3.6), a likelihood-based confidence interval for a consists of all 

those cr for which 

—2 (L*(cr) — M) < X(i.i-Q)- (3.7) 

We now discuss how to find the end-points for the interval defined by (3.7). 

3.5.1 The Likelihood-Based Interval in Case 1 

As mentioned before, the supremum value of the log-likelihood function L( / j . .a )  for 

Case 1 is 0. The maximum value of $(* ^ ^ —) — $( ———) for fixed a occurs 
a <y 

at /z = i ,  which gives 

L*{cr)  =  n  In(2 0(^—) — 1). 
1 c  

Putting the above expression for the profile log-likelihood into inequality (3.7) we can 

see that the interval for Case 1 is 

( 0 .  ^  ] •  

2 $ - i ( l ( l  +  e  ' 2 :  " ' ) )  
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3.5.2 The Likelihood-Based Interval in Other Cases 

Unlike the situation in Case 1, numerical analysis is needed to find end-points for 

the interval (3.7) in other circumstances. In Section 3.8, we provide adjusted endpoints 

for likelihood-based interval for Case 2. (One thing to notice is that the lower end-point 

of any likelihood-based interval in Case 2 is always 0, just as in Case 1.) In our work in 

this paper with likelihood-based intervals, we use numerical analysis to find end-points 

for interval (3.7), but the Appendix also provides approximations to the interval (3.7) 

for the situation where the sample range is 2 or more. 

3.6 Simulations 

In this section, Monte Carlo simulations are used to compare the two interval estima

tion methods introduced in previous sections. First, we randomly select a sample of size 

n from a Normal distribution with mean n and standard deviation a, and then round 

the observations to integers. Second, we apply formulas (3.5) and (3.7) to make intervals 

for the parameter cr. The last step is to examine whether the intervals contain the value 

cr or not. If the answer is "yes." then we increment a counter (t or I respectively for 

methods (3.5) and (3.7)) by 1. If the answer is "no," the counter is not incremented. 

This is repeated 1,000 times, and so we obtain counts Z10oo and I woo- The ratios ^°°° 

and ^qq are then Monte Carlo estimates of the actual coverage probabilities for the 

nominally (approximately) ( 1 — a) level confidence procedures. 

For example, suppose an initial random sample of size n = 5 taken from the Normal 

distribution with /z = 0.1 and a = 0.5 produces rounded data with range 1 and no = 2 

and ni = 3. After computing, we can get (0.328, 1.574) from formula (3.5) and (0, 

0.982) from formula (3.7) when a = 0.05. It is then obvious that both intervals contain 

the true parameter cr = 0.5, so we set the counters ti = 1 and /i = 1. Then suppose that 

a second rounded Normal sample contains n = 5 values, all z0 = 1.0. For this second 
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sample, the traditional interval is degenerate at 0, and the interval defined by (3.7) is 

(0, 0.502). In this case we will only increment Z by 1 and have <2 = 1 and Z2 = 2. And 

so on through 1,000 samples. 

Different combinations of £i,cr, n, and a were used in the simulations to provide 

a thorough comparison of the two methods. We considered fj, € {[0, 0.5](0.1)}. cr E 

{[0.5, 1.0](0.1), [2, 10](1)}, n € {2, 5, 10, 15}, and a E {0.05, 0.10, 0.20}, where 

[a, 6](c) means the values from a to 6 in increments of c. Figures 3.2 to 3.5 provide graphs 

of the estimated coverage probabilities for the traditional intervals (3.5) and likelihood-

based intervals (3.7) for different sample sizes n. In those graphs, the solid lines indicate 

the estimated coverage probabilities for the traditional method. The dashed lines indi

cate the estimated coverage probabilities for the likelihood-based method. 

After analyzing these figures, we reach the following conclusions. 

(1) At sample size n = 2, the traditional method is better than the likelihood-based 

method only when a > 2. For small <r. Case 1 and Case 2 samples are quite likely and 

the traditional method fails to produce intervals covering '"enough small cr s " for such 

samples. 

(2) At samples sizes n > 5, the coverage proability for the traditional method is much 

closer to the nominal value (1 — a) than that for likelihood-based method for a > 1.0. 

(1.0 is a compromise value that suits Figures 3.3 through 3.5.) 

(3) Generally speaking, the likelihood-based method is better than the traditional 

method (in terms of converage probability) when cr is small. (For example, we find that 

when cr < 0.5 all the coverage probabilities for the likelihood-based method are much 

better than those of the traditional method.) 
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: Traditional method 
: Likelihood-based method 
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Figure 3.2 The estimated coverage probability for the traditional method 
and the likelihood-based method at sample size n = 2. 
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: Traditional method 
: Likelihood-based method 
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Figure 3.3 The estimated coverage probability for the traditional method 
and the likelihood-based method at sample size n = 5. 
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Figure 3.4 The estimated coverage probability for the traditional method 
and the likelihood-based method at sample size n — 10. 
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: Traditional method 
: Likelihood-based method 
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Figure 3.5 The estimated coverage probability for the traditional method 
and the likelihood-based method at sample size n = 15. 
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3.7 Improving the Coverage Probability Calibration of the 

Likelihood-Based Intervals 

Form the simulations in Section 3.6, we see that although the likelihood-based 

method is conservative for small cr and guaranteed by standard theory to have cov

erage probability (1 — a) for large n, it can be liberal for small n and (particularly) 

large cr. A possible means of improving the small n performance of the likelihood-based 

method is to replace the X(i,i-Q) value in (3.7) with a larger value, d(n.ct), chosen to 

make the coverage probability of the likelihood-based method typically closer to the 

nominal value (1 — a). 

It is intuitively plausible that for large cr, the likelihood ratio test for "rounded'1 data 

is essentially the same as the one for "exact" data. One can find that for "exact'1 data 

(and -^êxact  and  Mg%act  the  exac t  da ta  analogs  of  our  L~ and M) 

-2(^êxactM ~ Mexact) = Y  ~ n  My') -  n + n Ln(n), (3.8) 

(a:,- — x)2 

where Y  = ———l- follows the x f n ~ i )  distribution. We might therefore consider 

replacing *n display (3.7) with d(n ,a)  that is the (1 — a)  quantile of the variable 

right side of (3.8) when Y is X(n-i)-

To find d(n ,  a), we need to find Z{n,a ) such that for Y ~ 

1 — a  = Pr(Y — n  ln(K) < Z(n ,  a)) 

since we may then set d(n ,  ex . )  =  Z{n ,  a)—n+n ln(n). To do this, we need to find values y i  

and y 2  such  tha t  y i  <  y 2 ,  y i—n ln (y i )  = y 2  — n  ln (y 2 ) .  and  Pr(y i  <  Y  < y 2 )  =  1 — a .  

Z(n,a) is then yi — n ln(yj). In Table 3.1 we give such d{n.a) values obtained by-

numerical methods for different combinations of n and a. 

Another set of simulations was conducted, using d ( n , a )  in place of in (3.7). 

Figures 3.6 through 3.9 summarize the estimated coverage probabilities for the same 



www.manaraa.com

46 

Table 3.1 <f(n, a) Values. 

n 
a  

n  0.05 0.10 0.20 

2 10.47 7.71 4.97 
3 7.26 5.23 3.27 
4 6.15 4.39 2.71 
5 5.58 3.97 2.43 
6 5.24 3.71 2.27 
7 5.01 3.54 2.16 
S 4.84 3.42 2.09 
9 4.72 3.33 2.03 

10 4.62 3.26 1.99 
15 4.34 3.06 1.86 
20 4.21 2.97 1.80 
30 4.08 2.88 1.75 
oo 3.84 2.71 1.64 

combinations of n, /z, and cr used in the previous section. On these graphs, the solid 

lines indicate estimated coverage probabilities for the traditional method and the dashed 

lines identify estimated coverage probabilities for the corrected likelihood-based method 

(with d(n,cx) values used in place of in (3.7)). The d(n,a) values make the 

estimated coverage probabilities closer to the nominal value (1 — a) except in some 

small cr cases. 

3.8 Improvements of Likelihood-Based Method for Small cr 

Value and Final Comparisons to the Traditional Method 

From the figures in previous section, we can see that d(n ,a)  values improve the 

estimated coverage probabilities for most cr values, but there are still some small cr 

values (e.g. cr < 1) where estimated coverage probabilities are much below nominal. For 

example, in Figure 3.7 with n = 0.5, the value a = 1.0 at a = 0.10 and the value cr = 

0.8 at a = 0.20 have estimated coverage probabilities well below the value (1 — a). In 
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: Traditional method 
: Likelihood-based method 
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Figure 3.6 The estimated coverage probability for the traditional method 
and the corrected likelihood-based method (using cl(n, a)) at 
sample size n  =  2. 
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: Traditional method 
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Figure 3.7 The estimated coverage probability for the traditional method 
and the corrected likelihood-based method (using c l ( n , a ) )  at 
sample size n  = 5. 
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: Traditional method 
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Figure 3.8 The estimated coverage probability for the traditional method 
and the corrected likelihood-based method (using d ( n , a ) )  at 
sample size n  = 10. 
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Figure 3.9 The estimated coverage probability for the traditional method 
and the corrected likelihood-based method (using d ( n . a ) )  at 
sample size n  =  15. 
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this section, we discuss how to improve these small a coverage probabilities. 

When a and n are small, there is a large probability of generating a Case 1 or Case 

2 sample. This suggests that if we somehow increase the size of Case 1 and Case 2 

intervals, we may well be able to improve the coverage probability and cure the small cr 

problem seen in the simulation results. 

Now it is clear that 

Pn,a{the interval fails to cover cr) > P^ a + P^a 

for P^a = a Case 1 sample is generated and the interval fails to cover cr), 

and P2
a — a Case 2 sample is generated and the interval fails to cover cr). 

So to produce 1 — a coverage probability, it is necessary to have 

+ (3.9) 

Numerically, we also find for the likelihood-based intervals of Section 3.7 that crx < 

cr2_i < <72,2 < * " " < °2, [f]: where <7\ is the upper limit of the interval for a Case 

1 sample, and cr2j is the upper limit for a Case 2 sample with n,0 = j. The limits 

crt < cr2,i < <72,2 < • - • < cr2, [i] derived in Section 3.7 are not large enough to guarantee 

tha t  inequal i ty  (3 .9)  holds .  So ,  as  a  s tep  toward  cor rec t ing  the  inadequate  smal l  cr  

coverage probabilities of the likelihood method of Section 3.7, we propose to replace 

crL, ct2,i, cr2,2, - - -, <72, [=.] with the smallest set of numbers satisfying both inequality (3.9) 

and the order restriction observed by the Case 1 and Case 2 limits of Section 3.7. 

Development of replacement Case 1 and Case 2 limits is a "brute force computation" 

problem. To replace <j\ we seek the minimum standard deviation <7j" so that 

max,, Case 1 sample ] < a . (3.10) 

To replace <72j we seek the minimum standard deviation cr^j so that 

maxM( P^a-j [Case 1 sample] 
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3 

+ 53 [Case 2 sample with n,-0 = / or n,0 = n — I ]  )  
i=i '3 

< oc (3.11) 

Then clearly, a\ < cr^i < a\,2 < ' ' ' < °2, [s.] and we propose to use such limits as 

replacements for the Case 1 and Case 2 limits of Section 3.7. 

Note that for a < cr I  all Case 1 and Case 2 samples have corresponding modified 

intervals that include cr. So inequality (3.9) holds. For cr\ < a < cr\ x all Case 2 

samples produce modified intervals including cr, but Case 1 samples do not. But (3.10) 

guarantees that inequality (3.9) holds. For cr^j < cr < o-~2 j+l, Case 1 samples and Case 

2 samples with 1 < n,0 < j or n — j < nt-0 < n — 1 produce modified intervals that fail 

to include cr while Case 2 samples with j < < n — j produced modified intervals 

that do cover cr. Then inequality (3.11) guarantees that inequality (3.9) holds. 

In Tables 3.2 and 3.3, we provide the modified upper limits Cg.n cr^ %, cr^ ^ for 

Case 1 and Case 2 samples for different n, n,-0, and a from above method. 

In Table 3.3, the value in the parentheses is n,0, the number of i 0  observations 

occurring in the sample. If n,-Q > [—], then the upper limit can be found by looking for 

n — n,-0 in the parentheses. (This is because the data (n,0, n,-0+1 ) and (n — nt-0, n — n,0+1 ) 

will produce the same interval.) For example, if a n — 10 sample is a Case 2 sample 

with z'o = 1, n 1 = 8, and a = 0.05, then the upper limit 0.677 from the table, by finding 

the value (n — n,0 ) =2 in parentheses. 

Figures 3.10 to 3.13 compare the estimated confidence levels for the modified method 

of this section to those of the traditional method. The figures show that the estimated 

coverage probabilities for small a are improved over those pictured in Figures 3.6 to 

3.9 and that the corrected method of this section can (unlike the traditional method) 

provide reliable inferences for cr based on rounded data. 

We also ran a simulation to compare the average interval lengths for the traditional 

intervals and the revised likelihood-based intervals of this section for the combinations of 
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Table 3.2 The modified upper limit for Case 1 samples. 

n 
a  

n  0.05 0.10 0.20 

2 5.635 2.807 1.381 
3 1.325 0.916 0.638 
4 0.822 0.653 0.516 
5 0.666 0.558 0.459 
6 0.586 0.502 0.422 
7 0.533 0.464 0.395 
S 0.495 0.435 0.375 
9 0.466 0.413 0.360 

10 0.443 0.396 0.347 
11 0.425 0.381 0.336 
12 0.409 0.369 0.327 
13 0.396 0.358 0.319 
14 0.384 0.349 0.312 
15 0.374 0.341 0.306 
16 0.366 0.334 0.301 
17 0.358 0.328 0.296 
IS 0.351 0.322 0.291 
19 0.344 0.317 0.287 
20 0.339 0.312 0.284 
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Table 3.3 Modified upper limits for Case 2 samples. (The values in the 
parentheses are values of ?i,0.) 

11 

a  

11 0.05 L o.io 0.20 

2 16.914 (1) 8.439 (1) 4.182 (1) 

3 3.535 (1) 2.462 (1) 1.684 (1) 
4 1.699(1) 2.034 (2) 1.303 (1) 1.571 (2) 0.972 (1) 1.189 (2) 
5 1.143(1) 1.516 (2) 0.921 (1) 1.231 (2) 0.728 (1) 0.980 (2) 
6 0.897 (1) 1.153 (2) 1.258 (3) 0.752 (1) 0.960 (2) 1.054 (3) 0.620 (1) 0.780 (2) 0.870 (3) 

7 0.768 (1) 0.944 (2) 1.106 (3) 0.660 (1) 0.800 (2) 0.949 (3) 0.557 (1) 0.663 (2) 0.802 (3) 

8 0.687 (1) 0.819(2) 0.952 (3) 
1.009 (4) 

0.599 (1) 0.707 (2) 0.825 (3) 
0.880 (4) 

0.513 (1) 0.597 (2) 0.698 (3) 
0.755 (4) 

9 0.629 (1) 0.736 (2) 0.837 (3) 
0.941 (4) 

0.555 (1) 0.644 (2) 0.726 (3) 
0.831 (4) 

0.480 (1) 0.551 (2) 0.610 (3) 
0.721 (4) 

10 0.585 (1) 0.677 (2) 0.747 (3) 
0.851 (4) 0.890 (5) 

0.520 (1) 0.597 (2) 0.654 (3) 
0.753 (4) 0.793 (5) 

0.454 (1) 0.516 (2) 0.560 (3) 
0.652 (4) 0.694 (5) 

11 0.550 (1) 0.630 (2) 0.690 (3) 
0.775 (4) 0.851 (5) 

0.493 (1) 0.560 (2) 0.609 (3) 
0.685 (4) 0.763 (5) 

0.434 (1) 0.489 (2) 0.526 (3) 
0.587 (4) 0.672 (5) 

12 0.522 (1) 0.593 (2) 0.646 (3) 
0.708 (4) 0.789 (5) 0.818 (6) 

0.470 (1) 0.531 (2) 0.573 (3) 
0.626 (4) 0.707 (5) 0.738 (6) 

0.417 (1) 0.466 (2) 0.499 (3) 
0.542 (4) 0.621 (5) 0.653 (6) 

13 0.499 (1) 0.563 (2) 0.610 (3) 
0.658 (4) 0.733 (5) 0.791 (6) 

0.452 (1) 0.506 (2) 0.544 (3) 
0.587 (4) 0.655 (5) 0.716 (6) 

0.402 (1) 0.447 (2) 0.477 (3) 
0.513 (4) 0.569 (5) 0.638 (6) 

14 0.479 (1) 0.537 (2) 0.580 (3) 
0.622 (4) 0.681 (5) 0.745 (6) 
0.768 (7) 

0.436 (1) 0.485 (2) 0.520 (3) 
0.558 (4) 0.607 (5) 0.674 (6) 
0.698 (7) 

0.390 (1) 0.431 (2) 0.458 (3) 
0.491 (4) 0.531 (5) 0.597 (6) 
0.624 (7) 

% 
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Table 3.3 (continued) 

11 

a  

11 0.05 0.10 0.20 

15 0/163 (1) 0.515 (2) 0.555 (3) 
0.593 (4) 0,639 (5) 0.701 (6) 
0.748 (7) 

0.422 (1) 0.468 (2) 0.499 (3) 
0.534 (4) 0.574 (5) 0.632 (6) 
0.682 (7) 

0.379 (1) 0.417 (2) 0.442 (3) 
0.472 (4) 0.506 (5) 0.555 (6) 
0.612 (7) 

16 0.448 (1) 0.497 (2) 0.533 (3) 
0.568 (4) 0.608 (5) 0.659 (6) 
0.711 (7) 0.731 (8) 

0.410 (1) 0.452 (2) 0.482 (3) 
0.514 (4) 0.550 (5) 0.592 (6) 
0.647 (7) 0.668 (8) 

0.370 (1) 0.406 (2) 0.428 (3) 
0.456 (4) 0.487 (5) 0.522 (6) 
0.578 (7) 0.601 (8) 

17 0.435 (1) 0.480 (2) 0.514 (3) 

0.546 (4) 0.583 (5) 0.623 (6) 

0.675 (7) 0.715 (8) 

0.400 (1) 0.439 (2) 0.466 (3) 

0.496 (4) 0.529 (5) 0.564 (6) 
0.613 (7) 0.655 (8) 

0.362 (1) 0.395 (2) 0.416 (3) 

0.442 (4) 0.470 (5) 0.501 (6) 
0.543 (7) 0.591 (8) 

18 0.424 (1) 0.466 (2) 0.497 (3) 
0.528 (4) 0.562 (5) 0.597 (6) 
0.640 (7) 0.684 (8) 0.701 (9) 

0.390 (1) 0.427 (2) 0.453 (3) 
0.480 (4) 0.511 (5) 0.543 (6) 
0.579 (7) 0.626 (8) 0.644 (9) 

0.354 (1) 0.386 (2) 0.406 (3) 
0.429 (4) 0.456 (5) 0.484 (6) 
0.514 (7) 0.562 (8) 0.582 (9) 

19 0.414 (1) 0.453 (2) 0.482 (3) 
0.511 (4) 0.543 (5) 0.576 (6) 
0.610 (7) 0.654 (8) 0.688 (9) 

0.382 (1) 0.417 (2) 0.440 (3) 
0.466 (4) 0.495 (5) 0.525 (6) 
0.555 (7) 0.597 (8) 0.633 (9) 

0.347 (1) 0.377 (2) 0.396 (3) 
0.418 (4) 0.443 (5) 0.469 (6) 
0.495 (7) 0.532 (8) 0.574 (9) 

20 0.405 (1) 0.442 (2) 0.469 (3) 
0.496 (4) 0.526 (5) 0.557 (6) 
0.587 (7) 0.625 (8) 0.662 (9) 

0.677 (10) 

0.374 (1) 0.407 (2) 0.430 (3) 
0.454 (4) 0.481 (5) 0.509 (6) 
0.536 (7) 0.568 (8) 0.609 (9) 
0.624 (10) 

0.341 (1) 0.370 (2) 0.388 (3) 
0.408 (4) 0.432 (5) 0.456 (6) 
0.480 (7) 0.507 (8) 0.549 (9) 

0.567 (10) 

OX Ol 
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: Traditional method 
: Likelihood-based method 
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Figure 3.10 
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The estimated coverage probability for the traditional method 
and the corrected likelihood-based method fusing Table 3.2, 
Table 3.3, and d ( n , a ) )  at sample size n  = 2. 
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: Traditional method 
: Likelihood-based method 
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Figure 3.11 The estimated coverage probability for the traditional method 
and the corrected likelihood-based method (using Table 3.2. 
Table 3.3, and d ( n , a ) )  at sample size n = 5. 
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: Traditional method 
: Likelihood-based method 
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Figure 3.12 The estimated coverage probability for the traditional method 
and the corrected likelihood-based method (using Table 3.2, 
Table 3.3. and d { n , a ) )  at sample size n  =  10. 



www.manaraa.com

59 

: Traditional method 
: Likelihood-based method 
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H E {0.0,0.25,0.5}, a E {0.3,0.5,1.0,3.0,5.0}, n E {2,3,4,5}, and a E {0.05,0.10,0.20}. 

The results are summarized in Tables 3.4, 3.5, and 3.6. 

From these simulations, we may observe the following about the average lengths. 

(1) At a — 0.3, the average length grows as the value fj. changes from 0.0 to 0.5. The 

reason for this is that the probability of obtaining a Case 2 sample increases with fj. We 

also find that this happens when cr = 0.5, but the increase in average length is not as 

pronounced. 

For these two small cr cases, the average lengths for the traditional method are less 

than those from the likelihood-based method, but the simulations shows that the cor

responding estimated coverage probabilities for the traditional method are much below 

nominal. 

(2) When cr > 1.0, the likelihood-based method obviously has smaller average lengths 

than the traditional method. These tables also show that for a > 1.0, changes in /i do 

not much affect inferences for cr. 

3.9 Conclusion 

To sum up the discussion in this paper, we may make the following conclusions. 

(1) The simulations show that inferences for the parameter cr will not be much 

affected by changing the value of location parameter \i. 

(2) When we have no prior evidence about the parameter cr, then the likelihood-

based method (corrected by the use of the limits in Table 3.2 and Table 3.3 for Case 

1 and Case 2 samples and d(n.a) in Table 3.1 when the sample range is at least 2) is 

suggested for the estimation of cr. When cr is small, say cr <1, the simulations show 

that the likelihood-based method has more conservative coverage probabilities than the 

traditional method. For large cr, the estimated coverage probabilities from the likelihood-
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Table 3.4 The estimated average lengths for the traditional method ( t )  and 
the final corrected likelihood-based method (/) for /i = 0.0. 

/i = 0.0 

a  0.3 0.5 1.0 3.0 5.0 
n  G I  / t  I  t  I  I  / t  I  

0.05 4.027 7.659 11.502 11.190 25.875 16.839 75.066 39.136 125.637 63.668 
2 0.10 1.976 3.817 5.643 5.574 12.695 8.345 36.829 19.249 61.641 31.270 

0.20 0.941 1.883 1687 2.748 6.044 4.062 17.535 9.197 29.349 14.893 

0.05 0.974 1.950 2.637 2.946 5.274 4.308 15.478 11.067 25.690 18.218 
3 0.10 0.648 1.351 1.756 2.035 3.511 2.920 10.305 7.376 17.104 12.124 

0.20 0.409 0.929 1.108 1.377 2.216 1.906 6.503 4.673 10.794 7.662 
0.05 0.592 1.152 1.503 1.663 2.976 2.568 8.699 6.951 14.560 11.589 

4 0.10 0.431 0.896 1.093 1.266 2.165 1.897 6.329 5.058 10.592 8.426 
0.20 0.295 0.685 0.747 0.934 1.480 1.331 4.327 3.464 7.243 5.765 

0.05 0.422 0.873 1.171 1.292 2.231 2.002 6.412 5.422 10.551 8.891 
5 0.10 0.319 0.715 0.887 1.025 1.690 1.537 4.858 4.112 7.993 6.740 

0.20 0.227 0.574 0.630 0.785 1.199 1.110 3.446 2.915 5.669 4.774 

CD 



www.manaraa.com

Table 3.5 The estimated average lengths for the traditional method ( t )  and 

the final corrected likelihood-based method (/) for fi = 0.25. 

II o
 

to
 

a  0.3 0 5 1.0 3.0 5.0 

n  o i  / t  / I  / t  / I  / 

0.05 7.765 9.565 12.148 11.546 25.163 16.656 72.841 37.944 125.414 63.568 

2 0.10 3.810 4.769 5.960 5.753 12.346 8.256 35.738 18.665 61.531 31.221 
0.20 1.814 1357 2.838 2.838 5.878 4.020 17.016 8.922 29.297 14.870 

0.05 1.641 2.408 1753 3.051 5.215 4.301 15.253 10.907 25.386 18.004 
3 0.10 1.093 1.673 1.833 2.111 3.472 2.918 10.156 7.270 16.901 11.981 

0.20 0.689 1.149 1.157 1.433 2.191 1.907 6.409 4.606 10.666 7.572 
0.05 0.943 1.370 1.592 1.740 2.957 2.560 8.709 6.958 14.501 11.540 

4 0.10 0.686 1.061 1.158 1.327 2.152 1.893 6.336 5.063 10.550 8.391 
0.20 0.469 0.806 0.792 0.983 1.471 1.329 4.333 3.467 7.214 5.740 

0.05 0.767 1.093 1.209 1.343 2.225 1.998 6.556 5.543 10.791 9.093 
5 0.10 0.581 0.889 0.916 1.070 1.685 1.533 4.967 4.203 8.175 6.893 

0.20 0.412 0.709 0.650 0.826 1.196 1.108 3.523 2.979 5.799 4.882 
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Table 3.6 The estimated average lengths for the traditional method (/) and 
the final corrected likelihood-based method (/) for /< = 0.5. 

[i = 0.5 

a 0.3 0.5 1.0 3.0 5.0 

a t  / i  / t  / t  / t  / 

0.05 11.413 11.415 13.483 12.205 25.519 16.689 74.243 38.680 127.328 64.566 
2 0.10 5.600 5.693 6.615 6.082 12.520 8.273 36.425 19.027 62.470 31.710 

0.20 2.GGG 2.816 3.149 3.001 5.961 4.028 17.343 9.095 29.744 15.102 
0.05 2.453 2.954 2.871 3.139 5.391 4.381 15.753 11.257 25.533 18.108 

3 0.10 1.633 2.055 1.911 2.174 3.589 2.968 10.488 7.502 17.000 12.051 
0.20 1.030 1.409 1.206 1.476 2.265 1.934 6.619 4.751 10.728 7.616 
0.05 1.498 1.729 1.705 1.819 2.975 2.562 8.809 7.039 14.749 11.739 

4 0.10 1.090 1.333 1.240 1.387 2.165 1.892 6.408 5.122 10.730 8.535 
0.20 0.745 1.004 0.848 1.027 1.480 1.327 4.382 3.508 7.337 5.839 
0.05 1.089 1.341 1.280 1.426 2.226 1.995 6.477 5.477 10.650 8.974 

5 0.10 0.825 1.087 0.970 1.139 1.686 1.531 4.907 4.154 8.068 6.803 
0.20 0,585 0.865 0.688 0.884 1.196 1.105 3.481 2.944 5.723 4.818 
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based method are quite close to those for the traditional method (near the nominal value 

(1 — q)), while the likelihood intervals have smaller average length. 

Appendix 

Aids for producing endpoints of the intervals prescribed by (3.7) for cases of range 

> 2 will be discussed in this appendix. 

As mentioned in the Appendix (B) of [1], approximate values of L' (cr)  and M for 

cases with range > 2 are 

L"{cr)  =  n «"  W-#-  - ) )  
i  a  cr 

and 

M = ))-
•  c r  cr 

Substituting above two approximations into the inequality 

— 2 (L*{er)  — M)  < d(n , a) 

one gets 

% -  ln(^r)  <  1 +  -  d(n ,a)  
a 1  a n  

1 n 

where cr2 = — V^(x:- — x)2. (This is the inequality defining the likelihood-based interval 
n f=i 

one would obtain ignoring the rounding altogether.) Then let £1,2:2 be two solutions of 

the equality x — ln(x) = H—d(n,a) with Xi < X2- An approximation for the corrected 

likelihood-based interval in the case that the range is 2 or more is ( ). 
y /X2 y /Xl  

References 

[1] Lee, Chiang-Sheng and Vardeman, Stephen B. (1999). Interval Estimators of the 

Parameter p. for Rounded Normal Data. Iowa State University, Ames, IA. 



www.manaraa.com

65 

4 ANALYSIS OF ROUNDED DATA FROM THE 

BALANCED ONE-WAY RANDOM EFFECTS MODEL 

A paper to be submitted to the Communications in Statistics 

Chiang-Sheng Lee and Stephen B. Vardeman 

Iowa State University, Ames, I A 50011-1210 

4.1 Introduction 

It is a practical problem that data on hand are sometimes obtained using crude gaug

ing. We might call such data "rounded data" since they are really obtained by rounding 

to the nearest unit. Do traditional statistical methods still provide good estimates of 

unknown parameters when rounded data are analyzed ? What can we do if they do not? 

Building on the discussions of the interval estimation of parameters fj. and a for a 

single rounded Normal sample in [2] and [3], we extend our discussion of rounded data 

to the one-way random effects model. Usually, the balanced one-way random effects 

model is expressed in the form 

V,-j = fii + Cij. i = 1. 2,..., m; j  = 1,2 n.  (4.1 ) 

Mr. Lee is a Ph. D. Candidate in Industrial Engineering in the Industrial and Manufacturing Systems 
Engineering Department, email: chiang'âiastate.edu 

Dr. Vardeman is a Professor in the Statistics and Industrial and Manufacturing Systems Engineering 
Departments. He is a Senior Member of ASQ. 
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where the ^,-'s axe a random sample from N ( f i ,  <t̂ ), the e,-/s are a random sample from 

AT(0, cr2), and the /z,-'s are independent of the et-/s. The variance components o> and cr 

are of primary interest in this model and we concentrate our discussion on their interval 

estimation. 

We start with the likelihood function in the next section, then find approximate max

imizes for the likelihood function in Section 4.3. Three special cases will be discussed 

in the fourth section. Inference methods for the parameters cr and crT will be discussed 

in Sections 4.5 and 4.6, and final conclusions will be drawn in the last section. 

4.2 The Rounded Data Likelihood Function 

Without loss of generality, we assume that all observed values y t ]  are integers, and 

utilize the vector form y = (3/11,3/12, —, yi.n, 2/21,2/2,n,-—.ym, 1, ..., t/m.n)' for convenience. 

The rounded data likelihood function /(y; yu, o>, cr) can be found by dealing with the 

N(fj.i,cr2) conditional distributions of unrounded values given (//1, /J.2. ...,/"m), and has 

the form 

f (y ; f j . ,a 7 , cr )  

=  n / + ~ n  t  4 ,  
{=1 •/-°° J=1 17 

= ft E.1 H( *(yi' + 0 5  " •m )  -  • ( "  ° - 5  ~  " '  )  )  ] •  ( 4 . 2 )  
i=l j=l a a 

where $ stands for the standard normal cumulative distribution function, d>{x; /j., aT) is 

the N ( f i ,  a 2 )  density, and E,- is expectation with respect to the variable /z,-. 

Furthermore, define the log-likelihood function C{n,  cr T ,  cr )  =  In(/(v; crT, cr)), two 

profile log-likelihood functions 

£*(crT) = sup sup £ ( F J ,  o"T, o") 
neR <j>O 

and 
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£*(<x) = sup sup C(/ j . , cr T , cr ) ,  
(i.eRa-T>0 

and the supremum value 
M. = sup sup sup£(yu,crr,cr). 

li£Rtrr>0 <r>0 

4.3 Approximate Maximizers of aT, cr) 

We may sometimes approximate —) — <J>( — —— )), as men
er cr  

tioned in [2], by — <£(— — ), where 4> is the standard normal density. Substiting this 
cr <7 

into the log-likelihood function £(//, crT, cr), under some circumstances 

C(/ j ,cr T , cr )  =  In (fj f %% [- <j>{— —)] f i ,  <r T )  dm)  
i=i J -°°  j= i  a  c r  

m ( n - L )  ,  2 .  m  2  2  E £ i  £ " = i ( ! K j  -  & \ ) 2  n £ £ L i ( î / ; .  ~ ^ ) 2  

= C 2 ln(<T ) - Yln(<7 + ̂  2^ 2(cr2 + nal) ' 

Z)"- z/i • 
where C = —mn ID.\/2TT and % = ———— . This is the "exact data" log-likelihood, 

n 
appropriate if there is no rounding. 

After setting three partial derivatives with respect to parameters f i ,  cr 2 ,  and a2 equal 

to 0, one can see that the maximizers (/z, à2, à2) of this approximate log-likelihood (for 

parameters (/z, cr2, cr2)) are 

max {0- m T>' ^Tj )-
y^m. ym 

where y = ————— . These three approximate maximizers are the maximum 
m n 

likelihood estimates when we treat "rounded data" as "exact." 

4.4 Special Cases in the Maximization of C(f j , , cr T .a )  

In this section, three special data types will be discussed. We will call these Case 1. 

Case [I, and Case [[[ data types. For each case, we find an approximate form for the 

supremum value A4, and also indicate (â2, à2) values that result from assuming the 

data are "exact." 
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4.4.1 Case I 

Case I is the situation where all the observations have the same value, say = y  

for all i and j. This case occurs often when both cr and aT values are small. For example, 

y = (1, 1; 1, 1) is a Case I sample for m = n = 2. 

In this case, we find that the supremum value of A4 is 0 and conclude that there are 

many triples (^z, <xT, cr) producing nearly this supremum value. A discussion of A his point 

is in Appendix (A). If we treat these Case I data as "exact," then we get (<r2, <x23 = (0.0). 

which gives us the second characterization this data type. 

4.4.2 Case II 

Case II is the situation where observations in a given sample all have the saime value, 

yij = Vi for all j. For example, y = (0, 0, 0; 2, 2, 2) is a Case II sample for rra. = 2 and 

n = 3. This data type occurs often when a is small. 

From the discussion in Appendix (B), the supremum value of /(y; f i ,  cr T , cr )  approxi

mates the supremum value of JJ [ ^ ^ —) — $(— — —) ] , whnch is the 

likelihood function with rounded sample y i ,  y 2 ,  . . . ,  y m  from cr\). This shows 

that in Case II an approximate value for M. can be computed from the single sample 

problem. 

Under this case, we get <rT > 0 and à = 0 when we plug the data into the formulas 

in Section 4.3, which provides another way to characterize such samples. 

4.4.3 Case III 

Case III is the situation where if rounding is ignored the sample values cause <rT = 0 
T"*̂ T7l / — — \ 2 A 2 

and â > 0. This requires —>=1 — — < 0. For instance, data y = ( —1_ 0; 0, 1) 
m n 

makes this difference 0 and v = (1, 2, 3; —1, 3, 3) makes the same difference -< 0. One 
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obvious result is that if any sample gives yt-. = y for all z, then such a sample always has 

<rT = 0. Such data occur with high probability when cr is large and aT is small. 

In Appendix (C), the discussion shows that in this case the supremum value of 

/(y ;/i,crT,cr) is close to the supremum value of JJ ^ ^ —)—$( — — —)]. 
:=1 j=l ^ ^ 

the likelihood function for a single rounded sample of size van from the Ar(/i, cr2) distri

bution. 

4.5 Inference for the Parameter a 

In this section, two methods of estimating the parameter cr are compared. The 

first one is what we call the traditional method, and the other is what we will call the 

likelihood-based method. They are mainly introduced in Section 4.5.1. 

4.5.1 The Construction of Confidence Intervals 

The traditional method for estimating the parameter <r in the one-way random effects 

model is to apply the fact that (with "exact" data) 

Ef=. - Si.)2 ,2 
0.2 ~ Xm(n-l)-

This produces the corresponding (1 — ce) level confidence interval for cr 

[ 
\ X'(m(n-1), 1-f) \ 

2 J-
A(7n(7i—1), |.) 

where x f r ,g )  1S the q quantile of \'2 distribution with degrees of freedom r. 

The (initial) likelihood-based method is to apply the result that under HQ : a = cr0 

and for large n, 

/ suP„eR suP<7T>o /(y;^,o-T,c70) x . _ 2 
(  c r  \  '  ~  X ( i ) -

suP„efi suP<rT>o SUP<7>0 

or to use the notation in this paper 

-2 ( rX<ro) - A4 ) - (4.4) 
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Using this large n result, an approximately (1 — a) level confidence interval for the 

parameter a is the set of all cr points satisfying 

—2 ( £*(cr) — M  )  <  X(i, i-û)- (4-5) 

4.5.2 Simulations 

In this section, the Monte Carlo method is used to compare the two methods for inter

val estimation of a introduced in Section 4.5.1. First we generate m values yu2. .... 

from N((i,<Tr) and mn values eu, e12, .... e1>n, ..., em,„ from A'(0.cr2). compute 

yij = fii + e,j and then round to integers. The next step is to find the traditional 

interval directly from (4.3) and get the value —2 (£*(cr) — j\4). If the interval (4.3) for 

the zth sample covers the value cr, then we add 1 to a counter t ("f" for the traditional 

method), otherwise we do not increase it. If the inequality (4.5) is satisfied, then we add 

1 to the counter I ('V1 for the likelihood-based method), otherwise we do nothing. We 

repeat these steps 1000 times and finallv get the values '°°° and *°°° . which are the 
^ 1000 1000 

estimated coverage probabilities for these two methods. 

Take the case m = n = 2 for illustration, supposing cr = 0.5 at a = 0.05. Assume 

the first sample is y = (—1, 0; 0. 1). Then the interval (4.3) is [0.36816. 4.44398], and 

—2 (£*(0.5) — A4)  = 0.17061. It is clear that interval (4.3) covers cr = 0.5 and that 

—2 (£*(0.5) — M) < 3.84146, so we add 1 to both counters t and I and get t l  = lx = 1. 

Next, suppose the second sample is y = (0, 0: 1, 1), then the interval (4.3) degenerates 

to 0 and —2 (£*(0.5) — Ai) = 3.00615. Thus we have = 1 and = 2, and so on. We 

repeat this processes 1000 times and finally get the values '°°° and *°°° . 
F & 1000 1000 

We ran simulations for parameter/design combinations with fj, = {0.0,0.3,0.5}, crT = 

{0.5,0.8,1,3,5,10}, cr = {(0.5,1.0)[0.1], 3,5, 7,10}, (m,n) = {(2, 2), (2, 3), (2,5), (3, 2), 

(3, 3), (3, 5), (4,2), (4,3), (5, 2), (5, 3)}, and a = {0.05, 0.10, 0.20}, (where (a, 6)[c] means 

the values from a to b with increment c.) After examining those results, we found 
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that for fixed (m,n), they were little affected by the choice of /i. Therefore, we here 

represent those results in Figures 4.1 to 4.4 by presenting only the y. = 0 case for 

(m,rz) E {(2,2), (2,5), (3,3), (5,2)}. In these figures, the solid lines identify estimated 

coverage probabilities for the traditional interval (4.3), and the dashed lines identify the 

estimated coverage probabilities for the likelihood-based method (4.5). 

4.5.3 Improving the Coverage Probability Calibration of Likelihood-Based 

Method 

The figures show that the estimated coverage probabilities for the likelihood-based 

method can be much lower than the nominal value (1 — a) in small samples. Adjustment 

of the X(i,i-Q) value in (4.5) (that is appropriate asymtotically) is needed to improve these 

probabilities for small samples. 

We reason that with exact data the estimation of a in the one-way model is in some 

sense the same problem as estimation of the standard deviation of a single distribution 

based on a sample of size m(n -1)4-1. We found in [3] that when estimating cr from 

a small rounded normal sample, in order to maintain a nominal confidence level it was 

necessary to replace an asymptotically appropriate ,\'2ltl_a) value with a larger value 

we called d(n,a). We have found empirically that applying those values in the present 

context cures the small-design deficiencies of the likelihood method (4.5). The method is 

to replace the X(i,i_Q) value in (4.5) by d(m(n -1)4-1, a) from Table 3.1 of [3]. Figures 

4.5 through 4.8 compare the estimated coverage probabilities for those two methods for 

the same parameter combinations as in Figures 4.1-4.4, but this time the likelihood-

based method uses d(m(n -1)4-1, a) in place of xfi.i-») in (4.5). In the new figures, 

the estimated coverage probabilities are quite close to (1 — et). 
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: Traditional method. 
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Figure 4.1 Estimated coverage probabilties for cr, m = 2 and n = 2. 
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: Traditional method 
: Likelihood-based method 
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Figure 4.2 Estimated coverage probabilties for a, m = 2 and n = 5. 
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: Traditional method 
: Likelihood-based method 
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Figure 4.3 Estimated coverage probabilties for cr, m = 3 and n = 3. 
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: Traditional method 
: Likelihood-based method 
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Figure 4.4 Estimated coverage probabilties for cr, m = 5 and n = 2. 
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: Traditional method 
: Likelihood-based method 
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Figure 4.5 Estimated coverage probabilties for cr, m 
rected likelihood method). 
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: Traditional method 
: Likelihood-based method 
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: Traditional method. 
: Likelihood-based method 
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4.6 Inference for the Parameter crT 

We now turn to the problem of estimating the parameter crT. 

4.6.1 The Construction of Confidence Intervals 

In this discussion, we adopt the method described on page 61 of the text [1] as the 

"traditional" or exact data method of interval estimation for <xT. In the notations of this 

paper, that confidence interval for crT is 

where 

[/ max{ 0, 5? " S{~ /max{ 0, £L^L±^} (4.6) 

02 _ nTlïLiiyi. -y..)2 

1 m- 1 

ç2 _ Er=iEI=1 (yp--y,-.)2 

2 m(n — 1) 

% = <?1 ^ ^ # + Gig S2 

Vu = H\ St + G\ St + Hi2 52 S2, 

G'z = 1 = L 2), 
x'("i, i-f) 
, .2  

•t » ^ 2 * 

Hi = —^— — 1 (/ = 1, 2), 
f-) 

12 - p ' 
* (  n , t  n 2 ;  f )  

rr (1 - ^(ni, n2; 1-f))2 ~ ^ ̂ (n,. n2; 1-f) ~ Gl 
H12 — ^ 

M"l- n2; 1-f-) 
ni = m — 1, and 

n2 = m(n — 1). 

Our likelihood-based method is based on £*(crr), the profile log-likelihood for aT 

(rather than for a). The analogues of expressions (4.4) and (4.5) in this context become 

-2 ( - VW ) - %2i), (4.7) 
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and 

—2 ( £*(crr) —  M )  <  X(i, i-q)- (4.8) 

4.6.2 Simulations 

We conducted simulations of the type described in Section 4.5.2 to compare the 

traditional and likelihood-based interval estimation methods for crr. The same combi

nations of and a used in Section 4.5.2 and new set cr = {0.5,0.8,1.3,5,10} 

and <xr = {(0.5,1.0)[0.1], 3,5, 7,10} were employed. As in the estimation of cr, for fixed 

(m, n), we found little dependence of the results on fx, and therefore only y. — 0.5 is 

represented in our presentation of the results. 

Figures 4.9 through 4.12 are the estimated coverage probabilities for (m, n) G {(2,2), 

(3, 3), (4,2), (5, 3)}. As usual, the solid lines identify results for the traditional method 

(4.6) and dashed lines identify results for the likelihood-based method (4.8). 

4.6.3 Improving the Coverage Probability Calibration of Likelihood-Based 

Method 

Figures 4.9 through 4.12 show that the likelihood-based method has unacceptably 

low estimated coverage probabilities, suggesting the value 1-q) in inequality (4.8) 

should be increased to improve these probabilities. We note from Figures 4.9 through 

4.12 that the estimated coverage probabilities are particularly deficient when crT is large. 

Arguing completely heuristically, we reason that for large o> the available information 

is in some sense "equivalent" to that in a random sample of size m from a N(Q.crl) 

distribution. That suggests that once again the values we found to be effective small 

sample replacements for xfi, i-Q) in the one sample context might be used. After a 

variety of studies, we have found that it is effective to use d(m,a) from Table 3.1 of 

[3] in the place of x\i, i_Q) value in inequality (4.8). Figures 4.13 to 4.16 compare the 
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Figure 4.9 Estimated coverage probabilties for o>, m = 2 and n = 2. 
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Figure 4.10 Estimated coverage probabilties for <rT, m = 3 and n = 3. 
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Figure 4.12 Estimated coverage probabilties for erT, m = 5 and n = 3. 
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estimated coverage probabilities for the traditional and modified likelihood methods for 

the same parameter combinations as in Figures 4.9 through 4.12. We can see that 

coverage probabilities for the likelihood-based method are much improved. 

In Tables 4.1 and 4.2, we summarize simulation results of average lengths for the 

traditional and modified likelihood-based methods when (m, n) = (2,2) and (5,3). These 

results reveal that the traditional method has larger average interval lengths than the 

modified likelihood-based method, and this situation is pronounced at (m, n) = (2.2). 

4.7 Conclusions 

In our simulations we found that it is useful (in computing A i  and checking (4.5) 

and (4.8)) to make use of the cases and analysis of Section 4.5 for special data types. For 

these data types, the M. can be simply found by reducing the 3-parameter problem to a 

2-parameter problem. Further, useful results concerning the shapes of profile likelihoods 

can be directly applied to these cases from the discussion in [3]. 

The simulations support the following conclusions: 

(1) The analysis on interval estimates of the parameters a and crT are not much affected 

by changes in the value of /x. 

(2) In the estimation of the parameter <7, no matter what the value of aT is, the tra

ditional method always has coverage probabilities below (1 — a) when cr is small. The 

modified likelihood-based method (using d(m(n — 1) + 1, a)) doesn't have this problem 

and performs well even when a is large. 

(3) In the estimation of the parameter <xT, it seems that both methods provide 

good coverage probabilities. But upon closer investigation, the modified likelihood-based 

method tends to produce somewhat shorter confidence intervals than the traditional 

method. 
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Figure 4.14 Estimated coverage probabilties for crT, m = 3 and n = 3 (cor
rected likelihood method). 
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Table 4.1 Simulated average lengths for traditional method ( t )  and 
the modified likelihood-based method (L) for estimating 
ar, ()?i,n) = (2,2). 

in = 2, n = 2 

a 0.5 0.8 1.0 3.0 5.0 
aT CY t L t L I L t L t L 

0.05 16.022 9.407 19.903 11.886 22.221 13.608 55.149 35.062 92.291 58.877 
0.5 0.10 7.963 4.686 9.897 5.920 11.047 6.776 27.340 17.458 45.702 29.314 

0.20 3.889 2.302 4.843 2.902 5.394 3.321 13.207 8.538 22.084 14.320 
0.05 23/170 12.687 25.652 14.404 26.434 15.403 58.434 36.658 94.204 59.701 

0.8 0.10 11.639 6.322 12.738 7.180 13.133 7.672 28.993 18.254 46.690 29.718 
0.20 5.647 3.112 6.197 3.531 6.402 3.764 14.034 8.932 22.571 14.527 
0.05 20.471 14.155 28.485 15.632 32.228 17.876 62.958 38.405 93.212 59.890 

1.0 0.10 13.100 7.053 14.131 7.793 16.007 8.911 31.247 19.129 46.137 29.816 
0.20 6.327 3.471 6.866 3.838 7.788 4.387 15.110 9.376 22.280 14.586 
0.05 76.961 39.084 78.183 39.776 76.058 39.009 91.948 51.291 114.605 68.163 

3.0 0.10 37.794 19.439 38.453 19.825 37.464 19.463 45.573 25.574 56.826 33.959 
0.20 18.022 9.381 18.366 9.644 17.928 9.515 22.031 12.553 27.511 16.648 
0.05 124.222 62.935 123.933 62.981 127.198 64.575 132.516 70.476 151.216 84.532 

5.0 0.10 60.914 31.153 60.849 31.294 62.472 32.146 65.552 35.163 74.935 42.137 
0.20 29.021 14.847 29.000 14.989 29.776 15.532 31.503 17.258 36.241 20.683 
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Table 4.2 Simulated average lengths for traditional method ( t )  and 

the modified likelihood-based method (L) for estimating 

0>, = (5,3). 

m -= 5, » = 3 
a 0.5 0.8 1.0 3.0 5.0 

a t L I L t L /. L t L 
0.05 1,175 1.270 1.767 1.530 1.977 1.724 4.518 4.051 7.127 6.524 

0.5 0.10 1.143 0.999 1.386 1.212 1.550 1.365 3.535 3.198 5.562 5.152 
0.20 0.831 0.739 1.020 0.912 1.145 1.023 2.601 2.408 4.097 3.872 
0.05 2.014 1.759 2.301 2.004 2.503 2.169 4.810 4.260 7.413 6.640 

0.8 0.10 1.535 1.352 1.776 1.568 1.948 1.708 3.774 3.370 5.811 5.249 
0.20 1.095 0.967 1.280 1.149 1.424 1.259 2.792 2.544 4.299 3.960 
0.05 2.384 2.079 2.649 2.314 2.867 2.495 5.027 4.461 7.581 6.809 

1.0 0.10 1.812 1.575 2.031 1.776 2.212 1.937 3.943 3.536 5.925 5.379 
0.20 1.287 1.095 1.456 1.261 1.597 1.390 2.915 2.660 4.359 4.048 
0.05 6.537 5.314 6.573 5.520 6.704 5.711 8.418 7.311 10.403 9.006 

3.0 0.10 4.954 3.868 4.981 3.952 5.081 4.204 6.498 5.712 8.144 7.151 
0.20 3.515 2.612 3.535 2.616 3.606 2.813 4.695 4.188 5.991 5.376 
0.05 10.646 8.918 10.937 9.213 10.859 9.167 12.091 10.546 14.208 12.354 

5.0 0.10 8.066 6.716 8.288 6.949 8.230 6.908 9.182 8.052 10.958 9.660 
0.20 5.722 4.721 5.881 4.894 5.840 4.832 6.520 5.734 7.898 7.076 
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Appendix 

Approximations for /(y; fi, crT, cr) for the three data types identified in Section 4.4 are 

discussed in (A), (B), and (C) separately. In these discussions, the approximation 

/

+oo rfi+ktT 
(j, a) dx = / d)(x; fi,cr) dx, (4.9) 

-OG J fl — k(7 

often applies, where <p(x; yu, a) is the N{^i1 a2) density and k E [3,6] is preferred. 

(A) Approximation of /(y; fi, crT, cr) for Case I Samples 

For Case I samples, the likelihood function /(y; /J., crT, a) is simply 

(  f ~  [  # ( y  +  0 ' 5 ~ ; " )  -  j "  « n w r )  M  r ,  
J —oo O" (7 

and from (4.9), this is approximately 

( rk" { + r *«;/.,«*) *, )-. (4.10) 
J fi—ka-r C C 

From [3], the value <3>( —-— -) — $(- —) % 1 if {fJ-i,cr) belongs to the trian
te" (T 

gular region defined by m E (y—0.5, y+0.5) and cr E (0, min{y  ̂  ̂ ^  —} ], 
k\ 

where ki E [3,6] is selected. So for (/z,-. cr) in the triangular region the value of (4.10) is 

approximately 

rfl+ko-r 
( / <p(p;;/^<Tr) dm )m. (4.11) 

J n—kcr-

Moreover, the supremum value of (4.11) is 1 and is approximately achieved for (/J, crT) 

with (fi — kcrT, fi + kaT) C (y — 0.5, y+ 0.5) or equivalently fi E (y — 0-5, y + 0.5) and 

e (0, min{• * + 0
L

5-y} ] . 

To summarize, the supremum value of /(y; /u, crT, cr) for a Case I sample is 1 and 

hence M = 0. In addition, points (/i,crT,cr) with /j. E (y — 0.5, y + 0.5) , cr E 
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.  y  +  0 . 5 — f i  —  k a T  y  + 0.5 — ft + kaT 0.5 — y + /j + kaT 0.5 — y + n — kaT ^ .  
( 0 ' m m {  h j  IT '  k, •  k, } ]  

and (JT € (0, min{y  ^ ^  ^  ̂ — - }  ]  p r o d u c e  / ( y ;  / t ,  o > ,  a) % ,M. 

(B) Approximation of /(y:^,ov,cr) for Case II Samples 

For Case II samples, the function /(y; fi, crT, a) is 

n / + ~  (  r  < K ^ « r )  
J —oo (J (7 

For any cr, the value 0(^' — —) — <£>( — —) approaches 0 when /J., is 
a cr 

outside the interval [yz- — 0.5 — kcr, yt- + 0.5 + kcr] with k 6 [3,6]. So f(y: /J., crT, cr) can 

be approximated by 

n ]" (4.12) 
J y t—0.5—ker <7 <J 

Numerically, the cr value which maximizes the function /(y; fj., o>, cr) in this case is 

quite small (around 10-5 or less). Thus we may approximate the expression (4.12) with 

n r ° 5  [ $ ( y ' + 0 5 ~ " ' ) - » ( y , ' ~ 0 , 5 ~ A " )  r  d m .  ( 4 . i 3 )  
J Vt —O.o (T cr 

Furthermore, for such small cr, the value <&(^' ^ ^ —) — $(— — — ) is nearlv 
a a 

1 for fi{ E [yi — 0.5, y,- + 0.5] . The expression (4.13) is then close to 

n f+°'5 <K*;P,<rT)dn= n [ ^ (
y '  +  Q ' 5 - ^ ) - ^ ( y ' ~ 0 " 5 - ^ ) ] -  ( 4 . 1 4 )  

i=i •'y.-o-s t=i °V °"T 

Therefore, the supremum value of /(y; cr,, cr) for Case II samples can be approximated 

by computing the supremum value of expression (4.14), which is a likelihood function 

for a rounded sample of size m from N(fiJcr2) based on sample values y1: y2, , ym. 

(C) Approximation of f(y;fj.,crT,a) for Case III Samples 
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From (4.9), an approximation of the function /(y;^,crT ,cr) for Case III samples is 

n/T'n i«*,»»><4.15, 
t-_i Jn-k*T j—i <T a 

Numerically, we also find that the crT which maximizes f ( y ;  j i .  a T ,  a )  is a small quantity-

like 10~° or less. Thus the continuous function [ <fr( ^ ^ —)—$(— ———) ] 
i=i ^ ^ 

is flat for fii in interval [fj. — kaT, jj. + kaT}. Hence (4.15) is approximately 

f i n  [ $ ( ^ + 0 - 5 - ^ _ j  d t i i  
.•=1 J—I U (T J N—K<7 T 

= fin [ ̂ (^ + 0-5-^) - $(^tj — 0-5 — ̂ ) j. (4.16) 
i=i j=i a a 

To sum up, we can approximate the supremum value of /(y; crT, cr) in this case by-

finding the supremum value of (4.16), which is the likelihood function of a rounded 

sample  o f  s i ze  mn f rom a  A r ( f j . , c r 2 )  d i s t r i bu t ion  based  on  sample  vec to r  y .  
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5 CONCLUSION 

After the discussions in this dissertation, some general conclusions about the analysis 

of rounded Normal data can be made. 

(1) Changes in the parameter ji will not much affect the properties of confidence 

intervals for variance parameters a or o>. 

(2) Traditional methods work well only when standard deviations are large. 

(3) The (adjusted) likelihood-based methods have better coverage probabilities than 

the traditional methods when rounding is potentially important. 
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